Michael Peil

Learn More
We show that isochronous synchronization between two delay-coupled oscillators can be achieved by relaying the dynamics via a third mediating element, which surprisingly lags behind the synchronized outer elements. The zero-lag synchronization thus obtained is robust over a considerable parameter range. We substantiate our claims with experimental and(More)
We study the spectral and dynamical behavior of two identical, mutually delay-coupled semiconductor lasers. We concentrate on the short coupling-time regime where the number of basic states of the system, the compound laser modes (CLMs), is small so that their individual behavior can be studied both experimentally and theoretically. As such it constitutes a(More)
Two delay-coupled semiconductor lasers are studied in the regime where the coupling delay is comparable to the time scales of the internal laser oscillations. Detuning the optical frequency between the two lasers, novel delay-induced scenarios leading from optical frequency locking to successive states of periodic intensity pulsations are observed. We(More)
We demonstrate experimentally how nonlinear optical phase dynamics can be generated with an electro-optic delay oscillator. The presented architecture consists of a linear phase modulator, followed by a delay line, and a differential phase-shift keying demodulator (DPSK-d). The latter represents the nonlinear element of the oscillator effecting a nonlinear(More)
In a joint experimental and modeling approach we demonstrate chaos synchronization imposed by a delayed shared feedback coupling between two nonlinear electro-optic oscillators. Robust identical synchronization is obtained for both symmetric and strongly asymmetric timing of the mutual coupling, offering great potential for applications such as chaos-based(More)
The response of a nonlinear optical oscillator subject to a delayed broadband bandpass filtering feedback is studied experimentally, numerically, and analytically. The oscillator loop is characterized by a high cutoff frequency with a response time tau approximately 10 ps and by a low cutoff frequency with a response time theta approximately 1 micros.(More)
We demonstrate the influence of vectorial coupling on the synchronization behavior of complex systems. We study two semiconductor lasers subject to delayed optical feedback which are unidirectionally coherently coupled via their optical fields. Our experimental and numerical results demonstrate a characteristic synchronization scenario in dependence on the(More)
Synchronization phenomena of two chaotically emitting semiconductor lasers subject to delayed optical feedback are investigated. The lasers are unidirectionally coupled via their optical fields. Our experimental and numerical studies demonstrate that the relative optical feedback phase is of decisive importance: a characteristic synchronization scenario(More)
We present experimental and numerical studies of the dynamics of two delay-coupled device-identical semiconductor lasers. We concentrate on the regime of short delay times where the coupling delay is comparable to the period of the relaxation oscillation frequency. We find characteristic scenarios in the intensity dynamics depending on the spectral detuning(More)
Synchronization of chaotic oscillators is of high current interest in various areas of science. Semiconductor laser systems offer a great potential for experimental studies of synchronization phenomena, because of well-controllable parameters, wellstudied nonlinear dynamical behavior and their broad spectrum of applications. We investigate(More)
  • 1