Learn More
Axoplasm from the squid giant axon contains a soluble protein translocator that induces movement of microtubules on glass, latex beads on microtubules, and axoplasmic organelles on microtubules. We now report the partial purification of a protein from squid giant axons and optic lobes that induces these microtubule-based movements and show that there is a(More)
A reconstituted system for examining directed organelle movements along purified microtubules has been developed. Axoplasm from the squid giant axon was separated into soluble supernatant and organelle-enriched fractions. Movement of axoplasmic organelles along MAP-free microtubules occurred consistently only after addition of axoplasmic supernatant and(More)
To move forward, migrating cells must generate traction forces through surface receptors bound to extracellular matrix molecules coupled to a rigid structure. We investigated whether cells sample and respond to the rigidity of the anchoring matrix. Movement of beads coated with fibronectin or an anti-integrin antibody was restrained with an optical trap on(More)
Membrane tethers are extracted at constant velocity from neuronal growth cones using a force generated by a laser tweezers trap. A thermodynamic analysis shows that as the tether is extended, energy is stored in the tether as bending and adhesion energies and in the cell body as "nonlocal" bending. It is postulated that energy is dissipated by three viscous(More)
Analysis of the trajectories of small particles at high spatial and temporal resolution using video enhanced contrast microscopy provides a powerful approach to characterizing the mechanisms of particle motion in living cells and in other systems. We present here the theoretical basis for the analysis of these trajectories for particles undergoing random(More)
Single microtubules from squid axoplasm support bidirectional movement of organelles. We previously purified a microtubule translocator (kinesin) that moves latex beads in only one direction along microtubules. In this study, a polar array of microtubules assembled off of centrosomes in vitro was used to demonstrate that kinesin moves latex beads from the(More)
We propose that membranes whose proteins and polar lipids are distributed asymmetrically in the two halves of the membrane bilayer can act as bilayer couples, i.e., the two halves can respond differently to a perturbation. This hypothesis is applied to the interactions of amphipathic drugs with human erythrocytes. It is proposed that anionic drugs(More)
What is the origin of the forces generating chromosome and spindle movements in mitosis? Both microtubule dynamics and microtubule-dependent motors have been proposed as the source of these motor forces. Cytoplasmic dynein and kinesin are two soluble proteins that power membranous organelle movements on microtubules. Kinesin directs movement of organelles(More)
Genetic or pharmacological alteration of the activity of the histone deacetylase 6 (HDAC6) induces a parallel alteration in cell migration. Using tubacin to block deacetylation of alpha-tubulin, and not other HDAC6 substrates, yielded a motility reduction equivalent to agents that block all NAD-independent HDACs. Accordingly, we investigated how the failure(More)
Cell spreading, adhesion and remodelling of the extracellular matrix (ECM) involve bi-directional signalling and physical linkages between the ECM, integrins and the cell cytoskeleton. The actin-binding proteins talin1 and 2 link ligand-bound integrins to the actin cytoskeleton and increase the affinity of integrin for the ECM. Here we report that depletion(More)