#### Filter Results:

#### Publication Year

2013

2016

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

An early triumph of quantum mechanics was the explanation of metallic and insulating behavior based on the filling of electronic bands. A complementary, classical picture of insulators depicts electrons as occupying localized and symmetric Wannier orbitals that resemble atomic orbitals. We report the theoretical discovery of band insulators for which… (More)

In a two-dimensional electron gas under a strong magnetic field, correlations generate emergent excitations distinct from electrons. It has been predicted that "composite fermions"--bound states of an electron with two magnetic flux quanta--can experience zero net magnetic field and form a Fermi sea. Using infinite-cylinder density matrix renormalization… (More)

Bilayer quantum Hall systems, realized either in two separated wells or in the lowest two sub-bands of a wide quantum well, provide an experimentally realizable way to tune between competing quantum orders at the same filling fraction. Using newly developed density matrix renormalization group techniques combined with exact diagonalization, we return to the… (More)

We show how to numerically calculate several quantities that characterize topological order starting from a microscopic fractional quantum Hall Hamiltonian. To find the set of degenerate ground states, we employ the infinite density matrix renormalization group method based on the matrix-product state representation of fractional quantum Hall states on an… (More)

- ‹
- 1
- ›