Michael P. Willand

Learn More
Peripheral nerve injury afflicts individuals from all walks of life. Despite the peripheral nervous system's intrinsic ability to regenerate, many patients experience incomplete functional recovery. Surgical repair aims to expedite this recovery process in the most thorough manner possible. However, full recovery is still rarely seen especially when nerve(More)
Despite advances in surgery, patients with nerve injuries frequently have functional deficits. We previously demonstrated in a rat model that daily electrical muscle stimulation (EMS) following peripheral nerve injury and repair enhances reinnervation, detectable as early as two weeks post-injury. In this study, we explain the enhanced early reinnervation(More)
INTRODUCTION Electrical stimulation of denervated muscle has been shown to minimize atrophy and fibrosis and increase force in animal and human models. However, electrical stimulation after nerve repair is controversial due to questions of efficacy. METHODS Using a rat model, we investigated the efficacy of short-term electrical muscle stimulation for(More)
BACKGROUND Incomplete recovery following surgical reconstruction of damaged peripheral nerves is common. Electrical muscle stimulation (EMS) to improve functional outcomes has not been effective in previous studies. OBJECTIVE To evaluate the efficacy of a new, clinically translatable EMS paradigm over a 3-month period following nerve transection and(More)
Electrical muscle stimulation following peripheral nerve injury has been a controversial method of treatment due primarily to the inconsistent literature surrounding it. In this presentation transcript I outline ongoing experiments investigating a clinically translatable daily muscle stimulation paradigm in rats following nerve injury. Results show that(More)
BACKGROUND Long-term muscle denervation leads to severe and irreversible atrophy coupled with loss of force and motor function. These factors contribute to poor functional recovery following delayed reinnervation. The authors' previous work demonstrated that temporarily suturing a sensory nerve to the distal motor stump (called sensory protection)(More)
Traditionally, animal studies employing electrical stimulation for conditioning denervated muscle rely on 24-hour-based stimulation paradigms, most employing implantable stimulators. While these stimulators provide the necessary current to cause muscular contraction, they have problems with battery life, programmability, and long-term robustness. Continuous(More)
In contrast to adult rat nerve injury models, neonatal sciatic nerve crush leads to massive motor and sensory neuron death. Death of these neurons results from both the loss of functional contact between the nerve terminals and their targets, and the inability of immature Schwann cells in the distal stump of the injured nerve to sustain regeneration.(More)
Editorial 208-213 Review 215-219 Universal linear motor driven Leg Press Dynamometer and concept of Serial Stretch Loading Dušan Hamar Review 221-230 Biology of muscle atrophy and of its recovery by FES in aging and mobility impairments: roots and by-products Review 231-236 Molecular and cellular mechanisms of muscle aging and sarcopenia and effects of(More)
The use of electrical muscle stimulation to treat denervated muscle prior to delayed reinnervation has been widely debated. There is evidence showing both positive and negative results following different protocols of electrical stimulation. In this study we investigated the role electrical stimulation has on muscle reinnervation following immediate and(More)