Learn More
Deletions, translocations, or point mutations in the CREB-binding protein (CBP) gene have been associated with Rubinstein-Taybi Syndrome; a human developmental disorder characterized by retarded growth and reduced mental function. To examine the role of CBP in memory, transgenic mice were generated in which the CaMKII alpha promoter drives expression of an(More)
Regulated proteolysis by the ubiquitin pathway has been implicated in control of the cell cycle, transcriptional activation, cell fate and growth, and synaptogenesis. The ubiquitin-proteasome system is involved in synaptic plasticity and is proposed to be part of a molecular switch that converts short-term synaptic potentiation to long-term changes in(More)
Long-term memory is believed to depend on long-lasting changes in the strength of synaptic transmission known as synaptic plasticity. Understanding the molecular mechanisms of long-term synaptic plasticity is one of the principle goals of neuroscience. Among the most powerful tools being brought to bear on this question are genetically modified mice with(More)
Synaptic transmission is highly dynamic, especially during periods of repetitive activity. This short-term synaptic plasticity, elicited by either pairs or short trains of action potentials at moderate frequencies (1-10 Hz), may give rise to either depression or facilitation of synaptic transmission. We analyzed these processes in isolated, synaptically(More)