Michael P. H. Stumpf

Learn More
Approximate Bayesian computation (ABC) methods can be used to evaluate posterior distributions without having to calculate likelihoods. In this paper, we discuss and apply an ABC method based on sequential Monte Carlo (SMC) to estimate parameters of dynamical models. We show that ABC SMC provides information about the inferability of parameters and model(More)
After the completion of the human and other genome projects it emerged that the number of genes in organisms as diverse as fruit flies, nematodes, and humans does not reflect our perception of their relative complexity. Here, we provide reliable evidence that the size of protein interaction networks in different organisms appears to correlate much better(More)
Most studies of networks have only looked at small subsets of the true network. Here, we discuss the sampling properties of a network's degree distribution under the most parsimonious sampling scheme. Only if the degree distributions of the network and randomly sampled subnets belong to the same family of probability distributions is it possible to(More)
Candida species are the most common cause of opportunistic fungal infection worldwide. Here we report the genome sequences of six Candida species and compare these and related pathogens and non-pathogens. There are significant expansions of cell wall, secreted and transporter gene families in pathogenic species, suggesting adaptations associated with(More)
Kuru is an acquired prion disease largely restricted to the Fore linguistic group of the Papua New Guinea Highlands, which was transmitted during endocannibalistic feasts. Heterozygosity for a common polymorphism in the human prion protein gene (PRNP) confers relative resistance to prion diseases. Elderly survivors of the kuru epidemic, who had multiple(More)
BACKGROUND Biological networks are highly dynamic in response to environmental and physiological cues. This variability is in contrast to conventional analyses of biological networks, which have overwhelmingly employed static graph models which stay constant over time to describe biological systems and their underlying molecular interactions. METHODS To(More)
Moment approximation methods are gaining increasing attention for their use in the approximation of the stochastic kinetics of chemical reaction systems. In this paper we derive a general moment expansion method for any type of propensities and which allows expansion up to any number of moments. For some chemical reaction systems, more than two moments are(More)
Population genetics has emerged as a powerful tool for unraveling human history. In addition to the study of mitochondrial and autosomal DNA, attention has recently focused on Y-chromosome variation. Ambiguities and inaccuracies in data analysis, however, pose an important obstacle to further development of the field. Here we review the methods available(More)
We present a novel and simple method to numerically calculate Fisher information matrices for stochastic chemical kinetics models. The linear noise approximation is used to derive model equations and a likelihood function that leads to an efficient computational algorithm. Our approach reduces the problem of calculating the Fisher information matrix to(More)
BACKGROUND Microbes must sense environmental stresses, transduce these signals and mount protective responses to survive in hostile environments. In this study we have tested the hypothesis that fungal stress signalling pathways have evolved rapidly in a niche-specific fashion that is independent of phylogeny. To test this hypothesis we have compared the(More)