Michael P . Czech

Learn More
Acquired resistance to the action of insulin to stimulate glucose transport in skeletal muscle is associated with obesity and promotes the development of type 2 diabetes. In skeletal muscle, insulin resistance can result from high levels of circulating fatty acids that disrupt insulin signalling pathways. However, the severity of insulin resistance varies(More)
Few physiological parameters are more tightly and acutely regulated in humans than blood glucose concentration. The major cellular mechanism that diminishes blood glucose when carbohydrates are ingested is insulin-stimulated glucose transport into skeletal muscle. Skeletal muscle both stores glucose as glycogen and oxidizes it to produce energy following(More)
of pleckstrin homology (PH) domains that bind selectively to these phosphoinositides (Kavran et al., 1998). Worcester, Massachusetts 01605 PH domains have been identified in over 100 proteins, many of which are involved in regulating the actin cy-toskeleton and signaling events at the plasma mem-Phosphatidylinositol (4,5)-bisphosphate (PIP2) and phos-brane.(More)
Adipose tissue plays a central role in the control of energy homeostasis through the storage and turnover of triglycerides and through the secretion of factors that affect satiety and fuel utilization. Agents that enhance insulin sensitivity, such as rosiglitazone, appear to exert their therapeutic effect through adipose tissue, but the precise mechanisms(More)
GRP1 and the related proteins ARNO and cytohesin-1 are ARF exchange factors that contain a pleckstrin homology (PH) domain thought to target these proteins to cell membranes through binding polyphosphoinositides. Here we show the PH domains of all three proteins exhibit relatively high affinity for dioctanoyl phosphatidylinositol 3,4,5-triphosphate(More)
Here we identified two novel proteins denoted EH domain protein 2 (EHD2) and EHD2-binding protein 1 (EHBP1) that link clathrin-mediated endocytosis to the actin cytoskeleton. EHD2 contains an N-terminal P-loop and a C-terminal EH domain that interacts with NPF repeats in EHBP1. Disruption of EHD2 or EHBP1 function by small interfering RNA-mediated gene(More)
Arf GTPases regulate membrane trafficking and actin dynamics. Grp1, ARNO, and Cytohesin-1 comprise a family of phosphoinositide-dependent Arf GTPase exchange factors with a Sec7-pleckstrin homology (PH) domain tandem. Here, we report that the exchange activity of the Sec7 domain is potently autoinhibited by conserved elements proximal to the PH domain. The(More)
Signal transmission by many cell surface receptors results in the activation of phosphoinositide (PI) 3-kinases that phosphorylate the 3' position of polyphosphoinositides. From a screen for mouse proteins that bind phosphoinositides, the protein GRP1was identified. GRP1 binds phosphatidylinositol-3,4,5-trisphosphate [PtdIns(3,4, 5)P3] through a pleckstrin(More)
Pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains are structurally related regulatory modules that are present in a variety of proteins involved in signal transduction, such as kinases, phospholipases, GTP exchange proteins, and adapter proteins. Initially these domains were shown to mediate protein-protein interactions, but more recently(More)
White adipose tissue is an important endocrine organ involved in the control of whole-body metabolism, insulin sensitivity, and food intake. To better understand these functions, 3T3-L1 cell differentiation was studied by using combined proteomic and genomic strategies. The proteomics approach developed here exploits velocity gradient centrifugation as an(More)