Learn More
HIF (hypoxia-inducible factor) is a transcription factor that plays a pivotal role in cellular adaptation to changes in oxygen availability. In the presence of oxygen, HIF is targeted for destruction by an E3 ubiquitin ligase containing the von Hippel-Lindau tumor suppressor protein (pVHL). We found that human pVHL binds to a short HIF-derived peptide when(More)
von Hippel-Lindau (VHL) disease is a hereditary cancer syndrome that is characterized by the development of multiple vascular tumors and is caused by inactivation of the von Hippel-Lindau protein (pVHL). Here we show that pVHL, through its beta-domain, binds directly to hypoxia-inducible factor (HIF), thereby targeting HIF for ubiquitination in an(More)
Oxygen is essential for eukaryotic life and is inextricably linked to the evolution of multicellular organisms. Proper cellular response to changes in oxygen tension during normal development or pathological processes, such as cardiovascular disease and cancer, is ultimately regulated by the transcription factor, hypoxia-inducible factor (HIF). Over the(More)
Constitutive expression of hypoxia-inducible factor (HIF) has been implicated in several proliferative disorders. Constitutive expression of HIF1 alpha and HIF2 alpha has been linked to a number of human cancers, especially renal cell carcinoma (RCC), in which HIF2 alpha expression is the more important contributor. Expression of HIF1 alpha is dependent on(More)
The product of the von Hippel-Lindau gene (VHL) acts as the substrate-recognition component of an E3 ubiquitin ligase complex that ubiquitylates the catalytic alpha subunit of hypoxia-inducible factor (HIF) for oxygen-dependent destruction. Although emerging evidence supports the notion that deregulated accumulation of HIF upon the loss of VHL is crucial(More)
Fibronectin coimmunoprecipitated with wild-type von Hippel-Lindau protein (pVHL) but not tumor-derived pVHL mutants. Immunofluorescence and biochemical fractionation experiments showed that fibronectin colocalized with a fraction of pVHL associated with the endoplasmic reticulum, and cold competition experiments suggested that complexes between fibronectin(More)
The c-Myc oncoprotein plays an important role in the growth and proliferation of normal and neoplastic cells. To execute these actions, c-Myc is thought to regulate functionally diverse sets of genes that directly govern cellular mass and progression through critical cell cycle transitions. Here, we provide several lines of evidence that c-Myc promotes(More)
CBL encodes a member of the Cbl family of proteins, which functions as an E3 ubiquitin ligase. We describe a dominant developmental disorder resulting from germline missense CBL mutations, which is characterized by impaired growth, developmental delay, cryptorchidism and a predisposition to juvenile myelomonocytic leukemia (JMML). Some individuals(More)
Functional inactivation of the von Hippel-Lindau (VHL) tumor suppressor protein is the cause of familial VHL disease and sporadic kidney cancer. The VHL gene product (pVHL) is a component of an E3 ubiquitin ligase complex that targets the hypoxia-inducible factor (HIF) 1 and 2 alpha subunits for polyubiquitylation. This process is dependent on the(More)
Tumor hypoxia is associated with disease progression, resistance to conventional cancer therapies and poor prognosis. Hypoxia, by largely unknown mechanisms, leads to deregulated accumulation of and signaling via receptor tyrosine kinases (RTKs) that are critical for driving oncogenesis. Here, we show that hypoxia or loss of von Hippel-Lindau protein--the(More)