Michael Oertel

Learn More
Liver transplantation is currently the only therapeutic option for patients with end-stage chronic liver disease and for severe acute liver failure. Because of limited donor availability, attention has been focused on the possibility to restore liver mass and function through cell transplantation. Stem cells are a promising source for liver repopulation(More)
Although it was proposed almost 60 years ago that the adult mammalian liver contains hepatic stem cells, this issue remains controversial. Part of the problem is that no specific marker gene unique to the adult hepatic stem cell has yet been identified, and regeneration of the liver after acute injury is achieved through proliferation of adult hepatocytes(More)
Recent studies have shown that nondividing primary cells, such as hepatocytes, can be efficiently transduced in vitro by human immunodeficiency virus-based lentivirus vectors. Other studies have reported that, under certain conditions, the liver can be repopulated with transplanted hepatocytes. In the present study, we combined these procedures to develop a(More)
BACKGROUND & AIMS Previously, we showed high-level, long-term liver replacement after transplantation of unfractionated embryonic day (ED) 14 fetal liver stem/progenitor cells (FLSPC). However, for clinical applications, it will be essential to transplant highly enriched cells, while maintaining high repopulation potential. METHODS Dlk-1, a member of the(More)
In recent years, there has been substantial progress in transplanting cells into the liver with the ultimate goal of restoring liver mass and function in both inherited and acquired liver diseases. The basis for considering that this might be feasible is that the liver is a highly regenerative organ. After massive liver injury or surgical removal of(More)
Liver progenitor/oval cells differentiate into hepatocytes and biliary epithelial cells, repopulating the liver when the regenerative capacity of hepatocytes is impaired. Recent studies have shown that hematopoietic bone marrow (BM) stem/progenitor cells can give rise to hepatocytes in diseased/damaged liver. One study has reported that BM cells can(More)
Epithelial cells in embryonic day (ED) 12.5 murine fetal liver were separated from hematopoietic cell populations using fluorescence-activated cell sorting (FACS) and were characterized by immunocytochemistry using a broad set of antibodies specific for epithelial cells (alpha-fetoprotein [AFP], albumin [ALB], pancytokeratin [PanCK], Liv2, E-cadherin, Dlk),(More)
Because organ shortage is the fundamental limitation of whole liver transplantation, novel therapeutic options, especially the possibility of restoring liver function through cell transplantation, are urgently needed to treat end-stage liver diseases. Groundbreaking in vivo studies have shown that transplanted hepatocytes are capable of repopulating the(More)
The Se-dependent expression of two selenoproteins, cytosolic glutathione peroxidase (cGPx) and type I iodothyronine-5'-deiodinase (5'DI), was investigated in the porcine epithelial kidney cell line LLC-PK1 in serum-free medium. The selenite-dependent expression of cGPx and 5'DI was revealed by enzyme-activity measurements, affinity labelling of 5'DI,(More)
We have previously achieved a high level of long-term liver replacement by transplanting freshly isolated embryonic day (ED) 14 rat fetal liver stem/progenitor cells (FLSPCs). However, for most clinical applications, it will be necessary to use cryopreserved cells that can effectively repopulate the host organ. In the present study, we report the growth and(More)