Michael O. Hengartner

Learn More
Apoptosis--the regulated destruction of a cell--is a complicated process. The decision to die cannot be taken lightly, and the activity of many genes influence a cell's likelihood of activating its self-destruction programme. Once the decision is taken, proper execution of the apoptotic programme requires the coordinated activation and execution of multiple(More)
In 2009, the Nomenclature Committee on Cell Death (NCCD) proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology, including 'apoptosis', 'necrosis' and 'mitotic catastrophe'. In view of the substantial progress in the biochemical and genetic exploration of cell(More)
Development of the nematode Caenorhabditis elegans is highly reproducible and the fate of every somatic cell has been reported. We describe here a previously uncharacterized cell fate in C. elegans: we show that germ cells, which in hermaphrodites can differentiate into sperm and oocytes, also undergo apoptotic cell death. In adult hermaphrodites, over 300(More)
To maintain genomic stability following DNA damage, multicellular organisms activate checkpoints that induce cell cycle arrest or apoptosis. Here we show that genotoxic stress blocks cell proliferation and induces apoptosis of germ cells in the nematode C. elegans. Accumulation of recombination intermediates similarly leads to the demise of affected cells.(More)
Although protein expression is regulated both temporally and spatially, most proteins have an intrinsic, "typical" range of functionally effective abundance levels. These extend from a few molecules per cell for signaling proteins, to millions of molecules for structural proteins. When addressing fundamental questions related to protein evolution,(More)
The gene ced-9 of the nematode Caenorhabditis elegans acts to protect cells from programmed cell death. A mutation that abnormally activates ced-9 prevents the cell deaths that occur during normal C. elegans development. Conversely, mutations that inactivate ced-9 cause cells that normally live to undergo programmed cell death; these mutations result in(More)
BACKGROUND The inability to efficiently repair DNA damage or remove cells with severely damaged genomes has been linked to several human cancers. Studies in yeasts and mammals have identified several genes that are required for proper activation of cell cycle checkpoints following various types of DNA damage. However, in metazoans, DNA damage can induce(More)
The C. elegans genes ced-2, ced-5, and ced-10, and their mammalian homologs crkII, dock180, and rac1, mediate cytoskeletal rearrangements during phagocytosis of apoptotic cells and cell motility. Here, we describe an additional member of this signaling pathway, ced-12, and its mammalian homologs, elmo1 and elmo2. In C. elegans, CED-12 is required for(More)
The control of excitable cell action potentials is central to animal behavior. We show that the egl-19 gene plays a pivotal role in regulating muscle excitation and contraction in the nematode Caenorhabditis elegans and encodes the alphal subunit of a homologue of vertebrate L-type voltage-activated Ca2+ channels. Semi-dominant, gain-of-function mutations(More)
The recognition and clearance of dead cells is a process that must occur efficiently to prevent an autoimmune or inflammatory response. Recently, a process was identified wherein the autophagy machinery is recruited to pathogen-containing phagosomes, termed MAPLC3A (LC3)-associated phagocytosis (LAP), which results in optimal degradation of the phagocytosed(More)