Learn More
Learning and then recognizing a route, whether travelled during the day or at night, in clear or inclement weather, and in summer or winter is a challenging task for state of the art algorithms in computer vision and robotics. In this paper, we present a new approach to visual navigation under changing conditions dubbed SeqSLAM. Instead of calculating the(More)
This paper describes a biologically inspired approach to vision-only simultaneous localization and mapping (SLAM) on ground-based platforms. The core SLAM system, dubbed RatSLAM, is based on computational models of the rodent hippocampus, and is coupled with a lightweight vision system that provides odometry and appearance information. RatSLAM builds a map(More)
The challenge of persistent navigation and mapping is to develop an autonomous robot system that can simultaneously localize, map and navigate over the lifetime of the robot with little or no human intervention. Most solutions to the simultaneous localization and mapping (SLAM) problem aim to produce highly accurate maps of areas that are assumed to be(More)
Fig. 1: We present a novel place recognition system that adapts state-of-the-art object proposal techniques to identify potential landmarks within an image. The proposed system utilizes convolutional network features as robust landmark descriptors to recognize places despite severe viewpoint and condition changes, without requiring any environment-specific(More)
Appearance-based loop closure techniques, which leverage the high information content of visual images and can be used independently of pose, are now widely used in robotic applications. The current state-of-the-art in the field is Fast Appearance-Based Mapping (FAB-MAP) having been demonstrated in several seminal robotic mapping experiments. In this paper,(More)
Appearance-based mapping and localisation is especially challenging when separate processes of mapping and localisation occur at different times of day. The problem is exacerbated in the outdoors where continuous change in sun angle can drastically affect the appearance of a scene. We confront this challenge by fusing the probabilistic local feature based(More)
Visual place recognition is a challenging problem due to the vast range of ways in which the appearance of real-world places can vary. In recent years, improvements in visual sensing capabilities, an ever-increasing focus on long-term mobile robot autonomy, and the ability to draw on state-of-the-art research in other disciplines-particularly recognition in(More)
This paper describes a new system, dubbed Continuous Appearance-based Trajectory SLAM (CAT-SLAM), which augments sequential appearance-based place recognition with local metric pose filtering to improve the frequency and reliability of appearance based loop closure. As in other approaches to appearance-based mapping, loop closure is performed without(More)
The paper discusses robot navigation from biological inspiration. The authors sought to build a model of the rodent brain that is suitable for practical robot navigation. The core model, dubbed RatSLAM, has been demonstrated to have exactly the same advantages described earlier: it can build, maintain, and use maps simultaneously over extended periods of(More)