Michael Mauel

Learn More
Stabilizing the carbon dioxide-induced component of climate change is an energy problem. Establishment of a course toward such stabilization will require the development within the coming decades of primary energy sources that do not emit carbon dioxide to the atmosphere, in addition to efforts to reduce end-use energy demand. Mid-century primary power(More)
A general circuit formulation of resistive wall mode ~RWM! feedback stabilization developed by Boozer @Phys. Plasmas 5, 3350 ~1998!# has been used as the basis for the VALEN computer code that calculates the performance of an active control system in arbitrary geometry. The code uses a finite element representation of a thin shell structure in an integral(More)
The Levitated Dipole Experiment (LDX) [J. Kesner, et al. in Fusion Energy 1998 3, 1165 (1999)] is a new research facility that is exploring the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. Unlike other configurations in which stability depends on curvature and magnetic shear,(More)
Fast, digital signal processing (DSP) has many applications. Typical hardware options for performing DSP are field-programmable gate arrays (FPGAs), application-specific integrated DSP chips, or general purpose personal computer systems. This paper presents a novel DSP platform that has been developed for feedback control on the HBT-EP tokamak device. The(More)
The characteristics of external kink instabilities observed during wall stabilization studies in the HBT-EP tokamak have been compared with the predictions of ideal MHD theory, in order to examine the stabilizing role of a resistive wall that is segmented both toroidally and poloidally. The reconstructed equilibria, for discharges with different plasma–wall(More)
The Levitated Dipole Experiment (LDX) is an innovative approach to explore the magnetic confinement of a fusion plasma offering the possibility of an improved fusion power source. In this concept, a magnetic dipole (a superconducting solenoid) is magnetically levitated for several hours at the center of a 5 m diameter, 3 m tall vacuum chamber. The Floating(More)
The plasma response to external resonant magnetic perturbations is measured as a function of stability of the resistive wall mode ~RWM!. The magnetic perturbations are produced with a flexible, high-speed waveform generator that is preprogrammed to drive an in-vessel array of 30 independent control coils and to produce an m/n53/1 helical field. Both(More)
Plasma confinement in the field of a levitated dipole offers many advantages for magnetic fusion. MHD stability is obtained from compressibility which utilizes the large flux tube expansion of a dipole field. Such a device could be high beta, steady state, and exhibit good confinement properties. The large flux expansion will ease the difficulty of the(More)
The Levitated Dipole Experiment (LDX) is used to study hightemperature plasma confined by the magnetic field produced by a high-current superconducting ring. Multiple-frequency ECRH heats and sustains plasma discharges for long, quasi-steady periods, and conditions of high plasma beta are reached by adjusting the rate of neutral fueling. When the(More)