Michael Martens

Learn More
We experimentally study the magnetization dynamics of pairs of micron-sized permalloy squares coupled via their stray fields. The trajectories of the vortex cores in the Landau-domain patterns of the squares are mapped in real space using time-resolved scanning transmission x-ray microscopy. After excitation of one of the vortex cores with a short(More)
The freeze-drying of biological material, which is to be quantitatively analyzed (micro-amount level) for compounds of low or intermediate molecular weight, should be either omitted or handled under strict control. This is because compounds such as amino acids, sugars, flavonoids, glycosides, coenzymes, peptides, etc., might be removed from concentrates and(More)
Topological singularities occur as antivortices in ferromagnetic thin-film microstructures. Antivortices behave as two-dimensional oscillators with a gyrotropic eigenmode which can be excited resonantly by spin currents and magnetic fields. We show that the two excitation types couple in an opposing sense of rotation in the case of resonant antivortex(More)
A selection of illuminations of the 12th century manuscript Liber Floridus was analysed with Raman spectroscopy (in situ and laboratory measurements), X-ray fluorescence spectroscopy, UV-fluorescence photography and infrared reflectography (IRR). The aim of this study is to determine the pigments used, in order to search for anachronisms. Using a(More)
Microbial electrochemical technologies (METs) are one of the emerging green bioenergy domains that are utilizing microorganisms for wastewater treatment or electrosynthesis. Real-time monitoring of bioprocess during operation is a prerequisite for understanding and further improving bioenergy harvesting. Optical methods are powerful tools for this, but(More)
  • 1