Learn More
A b s t r a c t This report describes the design and implementation of the Real-time Outbreak and Disease Surveillance (RODS) system, a computer-based public health surveillance system for early detection of disease outbreaks. Hospitals send RODS data from clinical encounters over virtual private networks and leased lines using the Health Level 7 (HL7)(More)
Early disease outbreak detection systems typically monitor health care data for irregularities by comparing the distribution of recent data against a baseline distribution. Determining the baseline is difficult due to the presence of different trends in health care data, such as trends caused by the day of week and by seasonal variations in temperature and(More)
Electronic laboratory-based reporting, developed by the UPMC Health System, Pittsburgh, Pennsylvania, was evaluated to determine if it could be integrated into the conventional paper-based reporting system. We reviewed reports of 10 infectious diseases from 8 UPMC hospitals that reported to the Allegheny County Health Department in southwestern Pennsylvania(More)
Traditional biosurveillance algorithms detect disease outbreaks by looking for peaks in a univariate time series of health-care data. Current health-care surveillance data, however, are no longer simply univariate data streams. Instead, a wealth of spatial, temporal, demographic and symptomatic information is available. We present an early disease outbreak(More)
INTRODUCTION Computer-based outbreak and disease surveillance requires high-quality software that is well-supported and affordable. Developing software in an open-source framework, which entails free distribution and use of software and continuous, community-based software development, can produce software with such characteristics, and can do so rapidly.(More)
The goal of the Real-time Outbreak and Disease Surveillance (RODS) Open Source Project is to accelerate deployment of computer-based syndromic surveillance. To this end, the project has released the RODS software under the GNU General Public License and created an organizational structure to catalyze its development. This paper describes the design of the(More)
Syndromic surveillance refers to methods relying on detection of individual and population health indicators that are discernible before confirmed diagnoses are made. In particular, prior to the laboratory confirmation of an infectious disease, ill persons may exhibit behavioral patterns, symptoms, signs, or laboratory findings that can be tracked through a(More)
A surge of development of new public health surveillance systems designed to provide more timely detection of outbreaks suggests that public health has a new requirement: extreme timeliness of detection. The authors review previous work relevant to measuring timeliness and to defining timeliness requirements. Using signal detection theory and decision(More)
OBJECTIVE Develop and evaluate a natural language processing application for classifying chief complaints into syndromic categories for syndromic surveillance. INTRODUCTION Much of the input data for artificial intelligence applications in the medical field are free-text patient medical records, including dictated medical reports and triage chief(More)