Michael M. Morgan

Learn More
Thinking big comes naturally to many biologists. Pursuing biological research on a monumental scale traditionally has not. Given the depth of that dichotomy, it is amazing that any established scientist would consider signing on to a biological research endeavor of the magnitude of the Human Genome Project (HGP), let alone agree to help steer the ship. Yet,(More)
5-Hydroxytryptamine (5-HT)(2C) receptor agonists hold promise for the treatment of obesity. In this study, we describe the in vitro and in vivo characteristics of lorcaserin [(1R)-8-chloro-2,3,4,5-tetrahydro-1-methyl-1H-3 benzazepine], a selective, high affinity 5-HT(2C) full agonist. Lorcaserin bound to human and rat 5-HT(2C) receptors with high affinity(More)
BACKGROUND Recent experiments have demonstrated a remarkable amount of specificity in the learning of simple visual tasks in humans, as well as considerable plasticity of receptive fields in the visual cortex of adult monkeys. Here, we tested the specificity of improvement through learning in the performance of human observers on two tasks using almost(More)
Activation of neurons in the rostral ventral medulla, by electrical stimulation or microinjection of glutamate, produces antinociception. Microinjection of opioid compounds in this region also has an antinociceptive effect, indicating that opioids activate a medullary output neuron that exerts a net inhibitory effect on nociception. When given systemically(More)
The periaqueductal gray (PAG) appears to play a key role in morphine antinociception and tolerance. The objective of this manuscript is to develop a cumulative dose microinjection procedure so the hypothesized role of the PAG in morphine antinociceptive tolerance can be assessed using dose-response analysis. Rats were implanted with a guide cannula into the(More)
Tolerance to the antinociceptive effect of morphine is mediated at least in part by morphine's action within the periaqueductal gray (PAG). The objective of the present study was to determine whether both ventral and lateral-dorsal PAG regions contribute to the development of tolerance. It was found that the antinociceptive efficacy of microinjecting(More)
Tolerance to the pain-relieving effects of opiates limits their clinical use. Although morphine tolerance is associated with desensitization of mu-opioid receptors, the underlying cellular mechanisms are not understood. One problem with the desensitization hypothesis is that acute morphine does not readily desensitize mu-opioid receptors in many cell types.(More)
The rostral ventromedial medulla is part of a neural network through which systemically administered morphine produces antinociception. Two physiologically characterized classes of presumed nociceptive modulating neurons that respond differentially to systemically administered morphine have been identified in this region: the firing of "on-cells" is(More)
GPR119 is a rhodopsin-like GPCR expressed in pancreatic beta-cells and incretin releasing cells in the GI tract. As with incretins, GPR119 increases cAMP levels in these cell types, thus making it a highly attractive potential target for the treatment of diabetes. The discovery of the first reported potent agonist of GPR119,(More)
Opioids activate the descending antinociceptive pathway from the ventrolateral periaqueductal gray (vlPAG) by both pre- and postsynaptic inhibition of tonically active GABAergic neurons (i.e., disinhibition). Previous research has shown that short-term desensitization of postsynaptic μ-opioid receptors (MOPrs) in the vlPAG is increased with the development(More)