Michael M. J. Treacy

Learn More
Today synthetic zeolites are the most important catalysts in petrochemical refineries because of their high internal surface areas and molecular-sieving properties. There have been considerable efforts to synthesize new zeolites with specific pore geometries, to add to the 167 available at present. Millions of hypothetical structures have been generated on(More)
We examine the flexibility of periodic planar networks built from rigid corner-connected equilateral triangles. Such systems are locally isostatic, since for each triangle the total number of degrees of freedom equals the total number of constraints. These nets are two-dimensional analogues of zeolite frameworks, which are periodic assemblies of(More)
Fluctuation microscopy is a hybrid diffraction-imaging technique that detects medium range order in amorphous materials by examining spatial fluctuations in coherent scattering. These fluctuations appear as speckle in images and diffraction patterns. The volume of material contributing to the speckle is determined by the point-spread function (the(More)
Using fluctuation electron microscopy, we have observed an increase in the mesoscopic spatial fluctuations in the diffracted intensity from vapor-deposited silicon thin films as a function of substrate temperature from the amorphous to polycrystalline regimes. We interpret this increase as an increase in paracrystalline medium-range order in the sample. A(More)
We have examined the structure and physical properties of paracrystalline molecular dynamics models of amorphous silicon. Simulations from these models show qualitative agreement with the results of recent mesoscale fluctuation electron microscopy experiments on amorphous silicon and germanium. Such agreement is not found in simulations from continuous(More)
A simple parameterization is presented for the elastic electron scattering cross sections from single atoms into the annular dark-field (ADF) detector of a scanning transmission electron microscope (STEM). The dependence on atomic number, Z, and inner reciprocal radius of the annular detector, q(0), of the cross section σ(Z,q(0)) is expressed by the(More)
We examine simulated electron microdiffraction patterns from models of thin polycrystalline silicon. The models are made by a Voronoi tessellation of random points in a box. The Voronoi domains are randomly selected to contain either a randomly-oriented cubic crystalline grain or a region of continuous random network material. The microdiffraction(More)
We report a method for site-specific fabrication of Fe catalyst particles on silica (SiO(2)) substrate by electron beam induced decompositionat 650 (EBID) of iron nonacarbonyl. The unobstructed, atomic level in situ observations of the catalyst particles, recorded degrees C in 8-15 mTorr of acetylene, reveal the structural transformations during reduction,(More)
Using electron correlograph analysis we show that coherent nanodiffraction patterns from sputtered amorphous silicon indicate that there is more local crystallinity in unannealed amorphous silicon than was previously suspected. By comparing with simulations for various models we show that within a typical unannealed amorphous silicon film a substantial(More)