Michael Lietz

Learn More
Synaptophysin, one of the major proteins on synaptic vesicles, is ubiquitously expressed throughout the brain. Synaptophysin and synapsin I, another synaptic vesicle protein, are also expressed by retinoic acid-induced neuronally differentiated P19 teratocarcinoma cells. Here, we show that inhibition of histone deacetylase activity in P19 cells is(More)
The zinc finger protein RE-1 silencing transcription factor (REST) is a transcriptional repressor that represses neuronal genes in non-neuronal tissues. A neuronal splice form of REST, termed REST4, has been described in the rat. It encompasses the N-terminus of REST, including the N-terminal repressor domain and five of the eight zinc fingers of the(More)
The zinc finger protein RE-1 silencing transcription factor (REST) is a transcriptional repressor that represses neuronal genes in non-neuronal tissues. We have analyzed the ability of REST and the REST mutants, RESTDeltaN and RESTDeltaC lacking either the N-terminal or C-terminal repression domains of REST, to inhibit transcription mediated by distinct(More)
BACKGROUND Humans and other organisms are equipped with a set of responses that can prevent damage from exposure to a multitude of endogenous and environmental stressors. If these stress responses are overwhelmed, this can result in pathogenesis of diseases, which is reflected by an increased development of, e.g., pulmonary and cardiac diseases in humans(More)
The zinc finger protein REST is a repressor of neuronal genes in nonneuronal tissues. We have analyzed the expression of REST, together with the expression of a REST target gene, encoding synapsin I, in human neuroblastoma cells. It was found that REST and synapsin I are coexpressed in neuroblastoma cell lines, although the expression of REST was inversely(More)
  • 1