Learn More
Invariant left-right asymmetry of the visceral organs is a fundamental feature of vertebrate embryogenesis. While a cascade of asymmetrically expressed genes has been described, the embryonic mechanism that orients the left-right axis relative to the dorsoventral and anteroposterior axes (a prerequisite for asymmetric gene expression) is unknown. We propose(More)
While significant progress has been made in understanding the molecular events underlying the early specification of the antero-posterior and dorso-ventral axes, little information is available regarding the cellular or molecular basis for left-right (LR) differences in animal morphogenesis. We describe the expression patterns of three genes involved in LR(More)
Invariant patterning of left-right asymmetry during embryogenesis depends upon a cascade of inductive and repressive interactions between asymmetrically expressed genes. Different cascades of asymmetric genes distinguish the left and right sides of the embryo and are maintained by a midline barrier. As such, the left and right sides of an embryo can be(More)
A pharmacological screen identified the H+ and K+ ATPase transporter as obligatory for normal orientation of the left-right body axis in Xenopus. Maternal H+/K+-ATPase mRNA is symmetrically expressed in the 1-cell Xenopus embryo but becomes localized during the first two cell divisions, demonstrating that asymmetry is generated within two hours(More)
Embryonic morphogenesis occurs along three orthogonal axes. While the patterning of the anterior-posterior and dorsal-ventral axes has been increasingly well characterized, the left-right (LR) axis has only recently begun to be understood at the molecular level. The mechanisms which ensure invariant LR asymmetry of the heart, viscera, and brain represent a(More)
  • M Levin
  • 1998
Left-right (LR) asymmetry provides a fascinating example of the patterning of a major body axis during embryonic development. The chick embryo was the first system in which a molecular basis for left-right patterning was characterized, revealing that molecules known to play a role in other aspects of embryogenesis likewise are involved in the establishment(More)
Consistent laterality is a crucial aspect of embryonic development, physiology, and behavior. While strides have been made in understanding unilaterally expressed genes and the asymmetries of organogenesis, early mechanisms are still poorly understood. One popular model centers on the structure and function of motile cilia and subsequent chiral(More)
The invariant left-right asymmetry of animal body plans raises fascinating questions in cell, developmental, evolutionary, and neuro-biology. While intermediate mechanisms (e.g., asymmetric gene expression) have been well-characterized, very early steps remain elusive. Recent studies suggested a candidate for the origins of asymmetry: rotary movement of(More)
Although the introduction of genome-wide association studies (GWAS) have greatly increased the number of genes associated with common diseases, only a small proportion of the predicted genetic contribution has so far been elucidated. Studying the cumulative variation of polymorphisms in multiple genes acting in functional pathways may provide a(More)