Michael Levin

Learn More
While significant progress has been made in understanding the molecular events underlying the early specification of the antero-posterior and dorso-ventral axes, little information is available regarding the cellular or molecular basis for left-right (LR) differences in animal morphogenesis. We describe the expression patterns of three genes involved in LR(More)
Invariant left-right asymmetry of the visceral organs is a fundamental feature of vertebrate embryogenesis. While a cascade of asymmetrically expressed genes has been described, the embryonic mechanism that orients the left-right axis relative to the dorsoventral and anteroposterior axes (a prerequisite for asymmetric gene expression) is unknown. We propose(More)
A pharmacological screen identified the H+ and K+ ATPase transporter as obligatory for normal orientation of the left-right body axis in Xenopus. Maternal H+/K+-ATPase mRNA is symmetrically expressed in the 1-cell Xenopus embryo but becomes localized during the first two cell divisions, demonstrating that asymmetry is generated within two hours(More)
Embryonic morphogenesis occurs along three orthogonal axes. While the patterning of the anterior-posterior and dorsal-ventral axes has been increasingly well characterized, the left-right (LR) axis has only recently begun to be understood at the molecular level. The mechanisms which ensure invariant LR asymmetry of the heart, viscera, and brain represent a(More)
Although the introduction of genome-wide association studies (GWAS) have greatly increased the number of genes associated with common diseases, only a small proportion of the predicted genetic contribution has so far been elucidated. Studying the cumulative variation of polymorphisms in multiple genes acting in functional pathways may provide a(More)
Invariant patterning of left-right asymmetry during embryogenesis depends upon a cascade of inductive and repressive interactions between asymmetrically expressed genes. Different cascades of asymmetric genes distinguish the left and right sides of the embryo and are maintained by a midline barrier. As such, the left and right sides of an embryo can be(More)
Biased left-right asymmetry is a fascinating and medically important phenomenon. We provide molecular genetic and physiological characterization of a novel, conserved, early, biophysical event that is crucial for correct asymmetry: H+ flux. A pharmacological screen implicated the H+-pump H+-V-ATPase in Xenopus asymmetry, where it acts upstream of early(More)
Regeneration requires exquisite orchestration of growth and morphogenesis. A powerful but still largely mysterious system of biophysical signals functions during regeneration, embryonic development and neoplasm. Ion transporters generate pH and voltage gradients, as well as ion fluxes, regulating proliferation, differentiation and migration. Endogenous(More)
As the central component of the human endotoxin sensor, Toll-like receptor 4 (TLR4) functions in the early detection and response to Gram-negative infection. We therefore examined a large collection of patients with meningococcal sepsis, comparing the frequency of rare TLR4 coding changes to those in an ethnically matched control population. TLR2 sequences(More)
The pathophysiological basis of hemorrhage in dengue infections remains poorly understood, despite the increasing global importance of these infections. A large prospective study of 167 Vietnamese children with dengue shock syndrome documented only minor prolongations of prothrombin and partial thromboplastin times but moderate to severe depression of(More)