Michael Le Bars

Learn More
A finite-element simulation of binary alloy solidification based on a single-domain formulation is presented and tested. Resolution of phase change is first checked by comparison with the analytical results of Worster [M.G. Worster, Solidi-fication of an alloy from a cooled boundary, J. Fluid Mech. 167 (1986) 481–501] for purely diffusive solidification.(More)
In this work, we report the excitation of inertial waves in a librating sphere even for libration frequencies where these waves are not directly forced. This spontaneous generation comes from the localized turbulence induced by the centrifugal instabilities in the Ekman boundary layer near the equator and does not depend on the libration frequency. We(More)
In a wide range of conditions, ocean waves break. This can be seen as the manifestation of a singularity in the dynamics of the fluid surface, moving under the effect of the fluid motion underneath. We show that, at the onset of breaking, the wave crest expands in the spanwise direction as the square root of time. This is first derived from a theoretical(More)
The elliptical instability can take place in planetary cores and stars elliptically deformed by gravitational effects, where it generates large-scale three-dimensional flows assumed to be dynamo capable. In this work, we present the first magneto-hydrodynamic numerical simulations of such flows, using a finite-element method. We first validate our numerical(More)
  • 1