Michael L. Vetter

Learn More
Eye development in both invertebrates and vertebrates is regulated by a network of highly conserved transcription factors. However, it is not known what controls the expression of these factors to regulate early eye formation and whether transmembrane signaling events are involved. Here we establish a role for signaling via a member of the frizzled family(More)
The cytidine deaminases APOBEC3G and APOBEC3F exert anti-HIV-1 activity that is countered by the HIV-1 vif protein. Based on potential transcription factor binding sites in their putative promoters, we hypothesized that expression of APOBEC3G and APOBEC3F would vary with T helper lymphocyte differentiation. Naive CD4+ T lymphocytes were differentiated to T(More)
The HIV-1 virion infectivity factor (Vif) is required during viral replication to inactivate the host cell anti-viral factor, APOBEC3G (A3G). Vif binds A3G and a Cullin5-ElonginBC E3 ubiquitin ligase complex which results in the proteasomal degradation of A3G. The Vif PPLP motif (amino acids 161-164) is essential for normal Vif function because mutations in(More)
Neuronal differentiation is regulated by both positive and negative regulatory factors; however, precisely how these factors interact to regulate retinogenesis is still unclear. We have examined the ability of the Notch pathway to modulate the function of the basic helix-loop-helix factor Xath5. Overexpression of Xath5 by RNA injection into cleavage-stage(More)
Cytoplasmic APOBEC3G has been reported to block wild-type human immunodeficiency virus type 1 (HIV-1) infection in some primary cells. It is not known whether cytoplasmic APOBEC3G has residual activity in activated T cells, even though virion-packaged APOBEC3G does restrict HIV-1 in activated T cells. Because we found that APOBEC3G expression is greater in(More)
Many cellular factors are regulated via mechanisms affecting protein conformation, localization, and function that may be undetected by most commonly used RNA- and protein-based profiling methods that monitor steady-state gene expression. Mass-spectrometry-based chemoproteomic profiling provides alternatives for interrogating changes in the functional(More)
We report here on an approach targeting the host reactive cysteinome to identify inhibitors of host factors required for the infectious cycle of Flaviviruses and other viruses. We used two parallel cellular phenotypic screens to identify a series of covalent inhibitors, exemplified by QL-XII-47, that are active against dengue virus. We show that the(More)
The distribution of non-covalently bound secretory component (SC) on the two subclasses, IgA-f and IgA-g of rabbit secretory IgA (sIgA) was determined; the two subclasses were separated from each other by the use of antibody-immunosorbent columns and were subjected to SDS polyacrylamide gel electrophoresis. No SC appeared to be dissociated from the IgA-f(More)
Recent advances in biosensing technologies present great potential for medical diagnostics, thus improving clinical decisions. However, creating a label-free general sensing platform capable of detecting multiple biotargets in various clinical specimens over a wide dynamic range, without lengthy sample-processing steps, remains a considerable challenge. In(More)
C-reactive protein (CRP) is a trace serum protein that increases markedly in concentration during inflammatory reactions. Although CRP, in the presence of a multivalent ligand, binds in vitro to a small percentage of peripheral blood lymphocytes from normal donors and is present on natural killer (NK) cells, exogenous addition of CRP has few effects on(More)