Michael L. Szulczewski

Learn More
We study a sharp-interface mathematical model of CO2 migration in deep saline aquifers, which accounts for gravity override, capillary trapping, natural groundwater flow, and the shape of the plume during the injection period. The model leads to a nonlinear advection–diffusion equation, where the diffusive term is due to buoyancy forces, not physical(More)
In carbon capture and storage (CCS), CO(2) is captured at power plants and then injected underground into reservoirs like deep saline aquifers for long-term storage. While CCS may be critical for the continued use of fossil fuels in a carbon-constrained world, the deployment of CCS has been hindered by uncertainty in geologic storage capacities and(More)
migration in saline aquifers. Part 1. Capillary trapping under slope and groundwater flow. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your(More)
We study the displacement of immiscible fluids in deformable, noncohesive granular media. Experimentally, we inject air into a thin bed of water-saturated glass beads and observe the invasion morphology. The control parameters are the injection rate, the bead size, and the confining stress. We identify three invasion regimes: capillary fingering, viscous(More)
We study experimentally how wettability impacts fluid–fluid displacement patterns in granular media. We inject a low-viscosity fluid (air) into a thin bed of glass beads initially saturated with a more-viscous fluid (a water/glycerol mixture). Chemical treatment of glass surfaces allows us to control the wetting properties of the medium and modify the(More)
We incorporate CO2 dissolution due to convective mixing into a sharp-interface mathematical model for the post-injection migration of a plume of CO2 in a saline aquifer. The model captures CO2 migration due to groundwater flow and aquifer slope, as well as residual trapping and dissolution. We also account for the tongued shape of the plume at the end of(More)
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. 8 The geologic sequestration of carbon dioxide (CO 2) in structural and stratigraphic 9 traps is a viable option to reduce anthropogenic emissions. While dissolution of the 10 CO 2 stored in these traps reduces the long-term leakage risk,(More)
We study the gravity-exchange flow of two immiscible fluids in a porous medium and show that, in contrast with the miscible case, a portion of the initial interface remains pinned at all times. We elucidate, by means of micromodel experiments, the pore-level mechanism responsible for capillary pinning at the macroscale. We propose a sharp-interface(More)
The effect of flow instabilities on capillary trapping mechanisms is a major source of uncertainty in CO2 sequestration in deep saline aquifers. Standard macroscopic models of multiphase flow in porous media are unable to explain and quantitatively predict the onset and structure of viscous-unstable flows, such as the displacement of brine by the injected(More)
Mixing of two fluids in viscously unstable displacements is far from being fully understood. It is not known how mixing efficiency depends on the viscosity contrast between the fluids, especially for adevction-dominated flows (Peclet number Pe > 103). It is well known that when a less viscous fluid displaces a more viscous fluid, the displacement front is(More)