Learn More
Partition coefficients are required for developing physiologically based pharmacokinetic models used to assess the uptake, distribution, tabolism, and elimination of volatile chemicals in mammals. A gas-phase vial equilibration technique is presented for determining the liquid:air and tissue:air partition coefficients for low-molecular-weight volatile(More)
Methylene chloride (dichloromethane, DCM) is metabolized by two pathways: one dependent on oxidation by mixed function oxidases (MFO) and the other dependent on glutathione S-transferases (GST). A physiologically based pharmacokinetic (PB-PK) model based on knowledge of these pathways was used to describe the metabolism of DCM in four mammalian species(More)
Dihalomethanes are metabolized by two major pathways: an oxidative, cytochrome P-450-mediated pathway that has been previously thought to yield only CO, and a glutathione (GSH)-dependent one that yields CO2. Both give 2 mol of halide ion. We studied the kinetic properties of the two pathways in vivo by exposing male rats to various inhaled concentrations of(More)
Bisphenol A (BPA), a high-volume chemical used to make polycarbonate plastic, epoxy resins, and other chemicals has been reported to be weakly estrogenic. To investigate the effects of long-term exposure to Bisphenol A, a multigeneration study was conducted in which fathead minnows (Pimephales promelas) were exposed to water concentrations of BPA in the(More)
A physiologically based pharmacokinetic model describing the disposition of chloroform in mice, rats, and humans was developed. This model was designed to facilitate extrapolations from high doses, such as those used in chronic rodent studies, to low doses that humans may be exposed to in the workplace or the environment. Kinetic constants for mice and rats(More)
Ethylene (ET) is a gaseous olefin of considerable industrial importance. It is also ubiquitous in the environment and is produced in plants, mammals, and humans. Uptake of exogenous ET occurs via inhalation. ET is biotransformed to ethylene oxide (EO), which is also an important volatile industrial chemical. This epoxide forms hydroxyethyl adducts with(More)
Furan is both hepatotoxic and hepatocarcinogenic in rats. The kinetics of furan biotransformation by male F-344 rats were studied in vivo and in vitro in order to understand target tissue dosimetry. A physiologically based pharmacokinetic (PBPK) model for furan in rats was developed from gas uptake studies using initial furan concentrations of 100, 500,(More)
A physiologically based pharmacokinetic (PB-PK) model providing a quantitative description of ethylene oxide (ETO) dosimetry in the rat was developed by integrating information on physiology, tissue solubility of ETO, and rate constants for ETO metabolism and binding. The PB-PK model consisted of nine compartments; liver, lung, testis, brain, fat, venous(More)
A modified version of the original physiologically based pharmacokinetic (PBPK) model by Andersen et al. (1987) has been developed and used in conjunction with previously published human kinetic data for dichloromethane (DCM) metabolism and to assess interindividual variability in the rate of oxidative metabolism. Time-course data for 13 volunteers (10(More)
In this study, we evaluate the significance of increased urinary chromium concentrations as a marker of chromium exposure and potential health risk. Six human volunteers ingested trivalent chromium [Cr(III)] and hexavalent chromium [Cr(VI)] at doses that are known to be safe but are much higher than typical dietary levels. The following dosing regimen was(More)