Learn More
Quinoline-containing antimalarial drugs, such as chloroquine, quinine and mefloquine, are mainstays of chemotherapy against malaria. The molecular basis of the action of these drugs is not completely understood, but they are thought to interfere with hemoglobin digestion in the blood stages of the malaria parasite's life cycle. The parasite degrades(More)
We have identified a homologue of the GTP-binding protein, Sar1p, in Plasmodium falciparum. Sar1p is a small GTPase that is thought to play a crucial role in trafficking of proteins between the endoplasmic reticulum and the Golgi. The P.falciparum SAR1 gene is located on chromosome 4 and comprises two exons separated by a 508 bp intron. The deduced amino(More)
The malaria parasite Plasmodium falciparum synthesises a protein, RESA, which associates with the membrane of newly invaded erythrocytes. Using spent supernatants from P. falciparum growing in culture as a source of soluble RESA we have developed an assay to examine the characteristics of RESA binding to the erythrocyte membrane in vitro. RESA associated(More)
Invasion of host cells by apicomplexan parasites, including Plasmodium falciparum and Toxoplasma gondii, is a multistep process. Central to invasion is the formation of a tight junction, an aperture in the host cell through which the parasite pulls itself before settling into a newly formed parasitophorous vacuole. Two protein groups, derived from different(More)
The malaria parasite, Plasmodium falciparum, spends part of its life cycle inside the erythrocytes of its human host. In the mature stages of intraerythrocytic growth, the parasite undertakes extensive remodeling of its adopted cellular home by exporting proteins beyond the confines of its own plasma membrane. To examine the signals involved in export of(More)
A cDNA clone encoding part of a novel polymorphic merozoite antigen from Plasmodium falciparum was isolated by screening a cDNA library with human immune serum from Papua New Guinea. Immunofluorescence microscopy and immunoblotting with affinity-purified antibodies recognized a highly polymorphic antigen, Ag956, present in schizonts and merozoites.(More)
Apical membrane antigen 1 (AMA1) is currently one of the leading malarial vaccine candidates. Anti-AMA1 antibodies can inhibit the invasion of erythrocytes by Plasmodium merozoites and prevent the multiplication of blood-stage parasites. Here we describe an anti-AMA1 monoclonal antibody (MAb 1F9) that inhibits the invasion of Plasmodium falciparum parasites(More)
The malaria parasite feeds by degrading haemoglobin in an acidic food vacuole, producing free haem moieties as a by-product. The haem in oxyhaemoglobin is oxidized from the Fe(II) state to the Fe(III) state with the consequent production of an equimolar concentration of H2O2. We have analysed the fate of haem molecules in Plasmodium falciparum-infected(More)
Apical membrane antigen 1 of the malarial parasite Plasmodium falciparum (Pf AMA1) is a merozoite antigen that is considered a strong candidate for inclusion in a malaria vaccine. Antibodies reacting with disulphide bond-dependent epitopes in AMA1 block invasion of host erythrocytes by P.falciparum merozoites, and we show here that epitopes involving sites(More)
Following invasion of human erythrocytes, the malaria parasite, Plasmodium falciparum, exports proteins beyond the confines of its own plasma membrane to modify the properties of the host red cell membrane. These modifications are critical to the pathogenesis of malaria. Analysis of the P. falciparum genome sequence has identified a large number of(More)