Learn More
The emergence of castrate-resistant prostate cancer (CRPC) contributes to the high mortality of patients diagnosed with prostate cancer (PCa), which in part could be attributed to the existence and the emergence of cancer stem cells (CSCs). Recent studies have shown that deregulated expression of microRNAs (miRNAs) contributes to the initiation and(More)
The chemokine CXCL12, also known as SDF-1, and its receptor, CXCR4, are overexpressed in prostate cancers and in animal models of prostate-specific PTEN deletion, but their regulation is poorly understood. Loss of the tumor suppressor PTEN (phosphatase and tensin homolog) is frequently observed in cancer, resulting in the deregulation of cell survival,(More)
BACKGROUND The metastasis of prostate cancer to bone is associated with a substantial increase in bone matrix turnover. Matrix metalloproteinases (MMPs) play roles in both normal bone remodeling and invasion and metastasis of prostate cancer. This study was designed to determine the role of MMP activity in prostate cancer that has metastasized to bone. (More)
It is well documented that tumor suppressive maspin inhibits tumor cell invasion and extracellular matrix remodeling. Maspin is a cytosolic, cell surface-associated, and secreted protein in the serine protease inhibitor superfamily. Although several molecules have been identified as candidate intracellular maspin targets, the extracellular maspin target(s)(More)
The platelet-derived growth factor (PDGF) proteins are potent stimu-LNCaP-processed PDGF DD is active in a paracrine manner as well. In a severe combined immunodeficient mouse model, PDGF DD expression accelerates early onset of prostate tumor growth and drastically enhances prostate carcinoma cell interaction with surrounding stromal cells. These(More)
Although increasing evidence suggests a critical role for platelet-derived growth factor (PDGF) receptor β (β-PDGFR) signaling in prostate cancer (PCa) progression, the precise roles of β-PDGFR and PDGF isoform-specific cell signaling have not been delineated. Recently, we identified the PDGF-D isoform as a ligand for β-PDGFR in PCa and showed that PDGF-D(More)
Prostate cancers metastasize to bone leading to osteolysis. Here we assessed proteolysis of DQ-collagen I (a bone matrix protein) and, for comparison, DQ-collagen IV, by living human prostate carcinoma cells in vitro. Both collagens were degraded, and this degradation was reduced by inhibitors of matrix metallo, serine, and cysteine proteases. Because(More)
Characterization of genes linked to bone metastasis is critical for identification of novel prognostic or predictive biomarkers and potential therapeutic targets in metastatic castrate-resistant prostate cancer (mCRPC). Although bone marrow core biopsies (BMBx) can be obtained for gene profiling, the procedure itself is invasive and uncommon practice in(More)
The CXCL12/CXCR4 axis transactivates HER2 and promotes intraosseous tumor growth. To further explore the transactivation of HER2 by CXCL12, we investigated the role of small GTP protein Gαi2 in Src and HER2 phosphorylation in lipid raft membrane microdomains and the significance of CXCR4 in prostate cancer bone tumor growth. We used a variety of methods(More)
  • 1