Learn More
Commonly used in vivo models of prostate cancer metastasis include syngeneic rodent cancers and xenografts of human cancer in immunodeficient mice. However, the occurrence of osseous metastases in these models is rare, and in xenograft models, species-specific factors may limit the ability of human cells to metastasize to rodent bones. We have modified the(More)
The emergence of castrate-resistant prostate cancer (CRPC) contributes to the high mortality of patients diagnosed with prostate cancer (PCa), which in part could be attributed to the existence and the emergence of cancer stem cells (CSCs). Recent studies have shown that deregulated expression of microRNAs (miRNAs) contributes to the initiation and(More)
The chemokine CXCL12, also known as SDF-1, and its receptor, CXCR4, are overexpressed in prostate cancers and in animal models of prostate-specific PTEN deletion, but their regulation is poorly understood. Loss of the tumor suppressor PTEN (phosphatase and tensin homolog) is frequently observed in cancer, resulting in the deregulation of cell survival,(More)
Membrane type 1-matrix metalloproteinase (MT1-MMP) is a known activator of latent MMP-2 (pro-MMP-2), and increased MMP-2 expression has been associated with tumor aggressiveness in prostate cancer. However, expression of MT1-MMP in human prostate tissue has not been described. We investigated the expression and immunolocalization of MT1-MMP and MMP-2 in the(More)
BACKGROUND The metastasis of prostate cancer to bone is associated with a substantial increase in bone matrix turnover. Matrix metalloproteinases (MMPs) play roles in both normal bone remodeling and invasion and metastasis of prostate cancer. This study was designed to determine the role of MMP activity in prostate cancer that has metastasized to bone. (More)
Membrane type 1 matrix metalloproteinase (MT1-MMP) plays an essential role in protease-mediated extracellular matrix (ECM) degradation, but it also functions as a sheddase releasing non-ECM substrates such as receptor activator of NF-kappaB ligand (RANKL), an osteoclastogenic factor typically confined to the surface of osteoblasts. We previously found high(More)
It is well documented that tumor suppressive maspin inhibits tumor cell invasion and extracellular matrix remodeling. Maspin is a cytosolic, cell surface-associated, and secreted protein in the serine protease inhibitor superfamily. Although several molecules have been identified as candidate intracellular maspin targets, the extracellular maspin target(s)(More)
Bone is the key metastatic site for prostate cancer. Endothelin 1 (ET-1) produced abundantly by prostate cancer cells binds to its receptor present on bone marrow stromal cells and favors osteoblastic response during bone metastases of prostate cancer. This suggests that interrupting ET-1 interaction with its endothelin A (ET(A)) receptor could be useful(More)
The platelet-derived growth factor (PDGF) proteins are potent stimu-LNCaP-processed PDGF DD is active in a paracrine manner as well. In a severe combined immunodeficient mouse model, PDGF DD expression accelerates early onset of prostate tumor growth and drastically enhances prostate carcinoma cell interaction with surrounding stromal cells. These(More)
Prostate cancers metastasize to bone leading to osteolysis. Here we assessed proteolysis of DQ-collagen I (a bone matrix protein) and, for comparison, DQ-collagen IV, by living human prostate carcinoma cells in vitro. Both collagens were degraded, and this degradation was reduced by inhibitors of matrix metallo, serine, and cysteine proteases. Because(More)