Learn More
BioNetGen allows a user to create a computational model that characterizes the dynamics of a signal transduction system, and that accounts comprehensively and precisely for specified enzymatic activities, potential post-translational modifications and interactions of the domains of signaling molecules. The output defines and parameterizes the network of(More)
Rule-based modeling involves the representation of molecules as structured objects and molecular interactions as rules for transforming the attributes of these objects. The approach is notable in that it allows one to systematically incorporate site-specific details about protein-protein interactions into a model for the dynamics of a signal-transduction(More)
Formalized rules for protein-protein interactions have recently been introduced to represent the binding and enzymatic activities of proteins in cellular signaling. Rules encode an understanding of how a system works in terms of the biomolecules in the system and their possible states and interactions. A set of rules can be as easy to read as a diagrammatic(More)
We consider a model of early events in signaling by the epidermal growth factor (EGF) receptor (EGFR). The model includes EGF, EGFR, the adapter proteins Grb2 and Shc, and the guanine nucleotide exchange factor Sos, which is activated through EGF-induced formation of EGFR-Grb2-Sos and EGFR-Shc-Grb2-Sos assemblies at the plasma membrane. The protein(More)
Biological Pathway Exchange (BioPAX) is a standard language to represent biological pathways at the molecular and cellular level and to facilitate the exchange of pathway data. The rapid growth of the volume of pathway data has spurred the development of databases and computational tools to aid interpretation; however, use of these data is hampered by the(More)
Many activities of cells are controlled by cell-surface receptors, which in response to ligands, trigger intracellular signaling reactions that elicit cellular responses. A hallmark of these signaling reactions is the reversible nucleation of multicomponent complexes, which typically begin to assemble when ligand-receptor binding allows an enzyme, often a(More)
The activities and interactions of proteins that govern the cellular response to a signal generate a multitude of protein phosphorylation states and heterogeneous protein complexes. Here, using a computational model that accounts for 307 molecular species implied by specified interactions of four proteins involved in signalling by the immunoreceptor(More)
We introduce a graph-theoretic formalism suitable for mod-eling biochemical networks marked by combinatorial complexity, such as signal-transduction systems, in which protein-protein interactions play a prominent role. This development extends earlier work by allowing for explicit representation of the connectivity of a protein complex. Within the(More)
Rule-based modeling provides a means to represent cell signaling systems in a way that captures site-specific details of molecular interactions. For rule-based models to be more widely understood and (re)used, conventions for model visualization and annotation are needed. We have developed the concepts of an extended contact map and a model guide for(More)