Michael Kutsche

Learn More
Cell adhesion molecules of the immunoglobulin superfamily promote cell aggregation and neurite outgrowth via homophilic and heterophilic interactions. The transient axonal glycoprotein TAG-1 induces cell aggregation through homophilic interaction of its fibronectin repeats. We investigated the domains responsible for the neurite outgrowth promoting activity(More)
Cell adhesion molecules have been implicated in neural development and hippocampal synaptic plasticity. Here, we investigated the role of the neural cell adhesion molecule L1 in regulation of basal synaptic transmission and plasticity in the CA1 area of the hippocampus of juvenile mice. We show that theta-burst stimulation (TBS) and pairing of low-frequency(More)
The HNK-1 carbohydrate structure, a sulfated glucuronyl-lactosaminyl residue carried by many neural recognition molecules, is involved in cell interactions during ontogenetic development and in synaptic plasticity in the adult. To characterize the functional role of the HNK-1 carbohydrate in vivo, we have generated mice deficient for the HNK-1(More)
To examine the role of neural cell adhesion molecule L1 in thalamocortical projections, we analysed L1 deficient (L1-/y) mice. Immunohistochemistry of pleiotrophin/HB-GAM, a marker for thalamocortical axons and axonal tracing experiments showed that thalamocortical axons were abnormally and highly fasciculated when they pass through the developing internal(More)
Tenascin-N, a novel member of the tenascin family, was identified and shown to encode characteristic structural motifs of a cysteine-rich stretch, 3.5 epidermal growth factor-like repeats, 12 fibronectin type III homologous domains, and a fibrinogen-like domain. The third fibronectin type III homologous domain is altered by RNA splicing. Characterization of(More)
  • 1