Learn More
Let P be a property of graphs. An-test for P is a randomized algorithm which, given the ability to make queries whether a desired pair of vertices of an input graph G with n vertices are adjacent or not, distinguishes, with high probability, between the case of G satisfying P and the case that it has to be modified by adding and removing more than n 2 edges(More)
We consider the following probabilistic model of a graph on n labeled vertices. Ž. First choose a random graph G n, 1r2 , and then choose randomly a subset Q of vertices of size k and force it to be a clique by joining every pair of vertices of Q by an edge. The problem is to give a polynomial time algorithm for finding this hidden clique almost surely for(More)
In this article we study Hamilton cycles in sparse pseudo-random graphs. We prove that if the second largest absolute value of an eigenvalue of a d-regular graph G on n vertices satisfies —————————————————— ðlog log nÞ 2 1000 log n ðlog log log nÞ d and n is large enough, then G is Hamiltonian. We also show how our main result can be used to prove that for(More)
For a graph H and an integer n, the Turán number ex(n, H) is the maximum possible number of edges in a simple graph on n vertices that contains no copy of H. H is r-degenerate if every one of its subgraphs contains a vertex of degree at most r. We prove that, for any fixed bipartite graph H in which all degrees in one colour class are at most r, ex(n, H)(More)
Let P be an optimization problem, and let A be an approximation algorithm for P. The domination ratio domr(A, n) is the maximum real q such that the solution x(I) obtained by A for any instance I of P of size n is not worse than at least a fraction q of the feasible solutions of I. We describe a deterministic, polynomial time algorithm with domination ratio(More)