Michael Kleinschmidt

Learn More
Recent results from physiological and psychoacoustic studies indicate that spectrally and temporally localized time-frequency envelope patterns form a relevant basis of auditory perception. This motivates new approaches to feature extraction for automatic speech recognition (ASR) which utilize two-dimensional spectro-temporal modulation filters. The paper(More)
A novel type of feature extraction for automatic speech recognition is investigated. Two-dimensional Gabor functions, with varying extents and tuned to different rates and directions of spectro-temporal modulation, are applied as filters to a spectro-temporal representation provided by mel spectra. The use of these functions is motivated by findings in(More)
A main task for computational auditory scene analysis (CASA) is to separate several concurrent speech sources. From psychoa-coustics it is known that common onsets, common amplitude modulation and sound source direction are among the important cues which allow the separation for the human auditory system. A new algorithm is presented here, that performs(More)
A novel noise suppression scheme for speech signals is proposed which is based on a neurophysiologically-motivated estimation of the local signal-to-noise ratio (SNR) in different frequency channels. For SNR-estimation, the input signal is transformed into so-called Amplitude Modulation Spectrograms (AMS), which represent both spectral and temporal(More)
In this paper a new approach is presented for estimating the long-term speech-to-noise ratio (SNR) in individual frequency bands that is based on methods known from automatic speech recognition (ASR). It uses a model of auditory perception as front end, physiologically and psychoacoustically motivated sigma-pi cells as secondary features, and a linear or(More)
  • 1