Learn More
Chitinase 3-like 1 (CHI3L1) has been proposed as a biomarker associated with the conversion to clinically definite multiple sclerosis in patients with clinically isolated syndromes, based on the finding of increased cerebrospinal fluid CHI3L1 levels in clinically isolated syndrome patients who later converted to multiple sclerosis compared to those who(More)
PURPOSE To apply quantitative susceptibility mapping (QSM) in the basal ganglia of patients with multiple sclerosis (MS) and relate the findings to R2* mapping with regard to the sensitivity for clinical and morphologic measures of disease severity. MATERIALS AND METHODS The local ethics committee approved this study, and all subjects gave written(More)
BACKGROUND Increased iron deposition has been implicated in the pathophysiology of multiple sclerosis (MS), based on visual analysis of signal reduction on T(2)-weighted images. R(2)* relaxometry allows to assess brain iron accumulation quantitatively. OBJECTIVE To investigate regional brain iron deposition in patients with a clinically isolated syndrome(More)
We investigated whether serum and cerebrospinal fluid (CSF) antibodies to the light subunit of the NF protein (NF-L), a main component of the axonal cytoskeleton, may serve as biological markers for axonal pathology and/or disease progression in multiple sclerosis (MS). IgG to NF-L was measured in sera and CSF of MS patients, patients with inflammatory(More)
OBJECTIVE We investigated longitudinal changes in iron concentration in the subcortical gray matter (caudate nucleus, globus pallidus, putamen, thalamus) of patients with clinically isolated syndrome (CIS) and definite multiple sclerosis (MS) and their relation to clinical and other morphologic variables. METHODS We followed 144 patients (76 CIS; median(More)
Diffuse optical tomography has shown promising results as a tool for breast cancer screening and monitoring response to chemotherapy. Dynamic imaging of the transient response of the breast to an external stimulus, such as pressure or a respiratory maneuver, can provide additional information that can be used to detect tumors. We present a new digital(More)
Neurodegeneration is the correlate of disease progression in multiple sclerosis (MS) and thus biological biomarkers that sensitively reflect this process are much needed. Neurofilament protein subunits are potential cerebrospinal fluid (CSF) biomarkers for disease progression in MS. We argue that the neurofilament light subunit can reflect acute axonal(More)
Adhesion molecule mediated leukocyte migration into the central nervous system is considered to be a critical step in the pathogenesis of multiple sclerosis (MS). We measured plasma levels of the soluble adhesion molecules sPECAM-1, sP-selectin and sE-selectin in 166 MS patients and in 36 healthy blood donors with ELISA. sPECAM-1, sP-selectin and(More)
The choice of appropriate control group(s) is critical in cerebrospinal fluid (CSF) biomarker research in multiple sclerosis (MS). There is a lack of definitions and nomenclature of different control groups and a rationalized application of different control groups. We here propose consensus definitions and nomenclature for the following groups: healthy(More)
BACKGROUND Axonal damage is considered a major cause of disability in multiple sclerosis (MS) and may start early in the disease. Specific biomarkers for this process are of great interest. OBJECTIVE To study if cerebrospinal fluid (CSF) biomarkers for axonal damage reflect and predict disease progression already in the earliest stages of the disease,(More)