Michael Kershaw

Learn More
The immune system can identify and destroy nascent tumor cells in a process termed cancer immunosurveillance, which functions as an important defense against cancer. Recently, data obtained from numerous investigations in mouse models of cancer and in humans with cancer offer compelling evidence that particular innate and adaptive immune cell types,(More)
To gain ample numbers of dendritic cells (DCs) for investigation, or for immunotherapy, the culture of DC precursors from bone marrow in either GM-CSF and IL-4 (GM/IL4-DCs) or Flt3L (FL-DCs) has often been used. Despite their common use, the relationship of these culture-derived DCs to those in vivo, and their relative potential for use in immunotherapy,(More)
PURPOSE A phase I study was conducted to assess the safety of adoptive immunotherapy using gene-modified autologous T cells for the treatment of metastatic ovarian cancer. EXPERIMENTAL DESIGN T cells with reactivity against the ovarian cancer-associated antigen alpha-folate receptor (FR) were generated by genetic modification of autologous T cells with a(More)
T cell shape is dictated by the selective recruitment of molecules to different regions of the cell (polarity) and is integral to every aspect of T cell function, from migration to cytotoxicity. This study describes a mechanism for the regulation of T cell polarity. We show that T cells contain a network of asymmetrically distributed proteins with the(More)
Natural killer (NK) cells are potent immune effector cells that can respond to infection and cancer, as well as allowing maternal adaptation to pregnancy. In response to malignant transformation or pathogenic invasion, NK cells can secrete cytokine and may be directly cytolytic, as well as exerting effects indirectly through other cells of the immune(More)
A new strategy to improve the therapeutic utility of redirected T cells for cancer involves the development of novel Ag-specific chimeric receptors capable of stimulating optimal and sustained T cell antitumor activity in vivo. Given that T cells require both primary and costimulatory signals for optimal activation and that many tumors do not express(More)
The immune system plays a critical role in the elimination and suppression of pathogens. Although the endogenous immune system is capable of immune surveillance resulting in the elimination of cancer cells, tumor cells have developed a variety of mechanisms to escape immune recognition often resulting in tumor outgrowth. The presence of immune infiltrate in(More)
In the MD45 mouse cytotoxic T lymphocyte (CTL) hybridoma cell line, we have expressed a chimeric receptor, consisting of the single-chain variable domains (scFv) of anti-carcinoma embryonic antigen (CEA) mAb linked to Fcgamma receptor (FcgammaR) chain via a CD8 hinge. Transfected MD45 subclones lysed CEA-positive human colon carcinoma cell lines in an(More)
The concept that the immune system recognizes and controls cancer was first postulated over a century ago, and cancer immunity has continued to be vigorously debated and experimentally tested. Mounting evidence in humans and mice supports the involvement of cytokines in tumor initiation, growth, and metastasis. The idea that the immune system detects(More)
T-cell-based immunotherapies provide a promising means of cancer treatment although durable antitumor responses are infrequent. A potential reason for these shortcomings may lie in the observed lack of trafficking of specific T cells to tumor. Our increasing knowledge of the process of trafficking involving adhesion molecules and chemokines affords us the(More)