Learn More
The scarcity of usable nitrogen frequently limits plant growth. A tight metabolic association with rhizobial bacteria allows legumes to obtain nitrogen compounds by bacterial reduction of dinitrogen (N2) to ammonium (NH4+). We present here the annotated DNA sequence of the alpha-proteobacterium Sinorhizobium meliloti, the symbiont of alfalfa. The tripartite(More)
Mice, cell lines, retroviral vectors, cell culture, flow cytometry, immunostainings, teratoma formation and blastocyst injections were previously described in detail (Wernig et al., 2007; Meissner et al., 2007; Brambrink et al., 2008). Wnt3a conditioned media (Willert et al., 2003) and control conditioned media from parental L cells were generated according(More)
The symbiotic nitrogen-fixing soil bacterium Sinorhizobium meliloti contains three replicons: pSymA, pSymB, and the chromosome. We report here the complete 1,354,226-nt sequence of pSymA. In addition to a large fraction of the genes known to be specifically involved in symbiosis, pSymA contains genes likely to be involved in nitrogen and carbon metabolism,(More)
During the past decade, cancer stem cells (CSCs) have been increasingly identified in many malignancies. Although the origin and plasticity of these cells remain controversial, tumour heterogeneity and the presence of small populations of cells with stem-like characteristics is established in most malignancies. CSCs display many features of embryonic or(More)
Inherited and somatic mutations in the adenomatous polyposis coli occur in most colon cancers, leading to activation of beta-catenin-responsive genes. To identify small molecule antagonists of this pathway, we challenged transformed colorectal cells with a secondary structure-templated chemical library, looking for compounds that inhibit a(More)
The Wnt signaling pathways have been conserved throughout evolution and regulate cell proliferation, morphology, motility, and fate during embryonic development. These pathways also play important roles throughout adult life to maintain homeostasis of tissues including skin, blood, intestine, and brain by regulating somatic stem cells and their niches.(More)
WNT-β-catenin signalling is involved in a multitude of developmental processes and the maintenance of adult tissue homeostasis by regulating cell proliferation, differentiation, migration, genetic stability and apoptosis, as well as by maintaining adult stem cells in a pluripotent state. Not surprisingly, aberrant regulation of this pathway is therefore(More)
Wnt/beta-catenin signaling has been shown to promote self-renewal in a variety of tissue stem cells, including neuronal stem cells and hematopoietic stem cells. However, activation of the Wnt/beta-catenin pathway promoted and inhibition of the pathway prevented differentiation of neuronal precursor cells. A clear explanation for the differential effects of(More)
The availability of bacterial genome sequences has created a need for improved methods for sequence-based functional analysis to facilitate moving from annotated DNA sequence to genetic materials for analyzing the roles that postulated genes play in bacterial phenotypes. A powerful cloning method that uses lambda integrase recombination to clone and(More)