Michael Kaess

Learn More
Solving the SLAM problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. We investigate smoothing approaches as a viable alternative to extended Kalman filter-based solutions to the problem. In particular, we look at approaches that factorize either the associated information matrix or the measurement Jacobian(More)
In this paper, we present incremental smoothing and mapping (iSAM), which is a novel approach to the simultaneous localization and mapping problem that is based on fast incremental matrix factorization. iSAM provides an efficient and exact solution by updating a QR factorization of the naturally sparse smoothing information matrix, thereby recalculating(More)
We present a novel data structure, the Bayes tree, that provides an algorithmic foundation enabling a better understanding of existing graphical model inference algorithms and their connection to sparse matrix factorization methods. Similar to a clique tree, a Bayes tree encodes a factored probability density, but unlike the clique tree it is directed and(More)
In this paper we present an extension to the KinectFusion algorithm that permits dense mesh-based mapping of extended scale environments in real-time. This is achieved through (i) altering the original algorithm such that the region of space being mapped by the KinectFusion algorithm can vary dynamically, (ii) extracting a dense point cloud from the regions(More)
This paper describes extensions to the Kintinuous [1] algorithm for spatially extended KinectFusion, incorporating the following additions: (i) the integration of multiple 6DOF camera odometry estimation methods for robust tracking; (ii) a novel GPU-based implementation of an existing dense RGB-D visual odometry algorithm; (iii) advanced fused realtime(More)
We present a new SLAM system capable of producing high quality globally consistent surface reconstructions over hundreds of metres in real-time with only a low-cost commodity RGB-D sensor. By using a fused volumetric surface reconstruction we achieve a much higher quality map over what would be achieved using raw RGB-D point clouds. In this paper we(More)
We introduce incremental smoothing and mapping (iSAM), a novel approach to the problem of simultaneous localization and mapping (SLAM) that addresses the data association problem and allows real-time application in large-scale environments. We employ smoothing to obtain the complete trajectory and map without the need for any approximations, exploiting the(More)
This paper describes a new algorithm for cooperative and persistent simultaneous localization and mapping (SLAM) using multiple robots. Recent pose graph representations have proven very successful for single robot mapping and localization. Among these methods, incremental smoothing and mapping (iSAM) gives an exact incremental solution to the SLAM problem(More)
Smoothing approaches to the Simultaneous Localization and Mapping (SLAM) problem in robotics are superior to the more common filtering approaches in being exact, better equipped to deal with non-linearities, and computing the entire robot trajectory. However, while filtering algorithms that perform map updates in constant time exist, no analogous smoothing(More)
Maintaining a map of an environment that changes over time is a critical challenge in the development of persistently autonomous mobile robots. Many previous approaches to mapping assume a static world. In this work we incorporate the time dimension into the mapping process to enable a robot to maintain an accurate map while operating in dynamical(More)