Learn More
OBJECTIVE Ca2+-influx through transient receptor potential (TRP) channels was proposed to be important in endothelial function, although the precise role of specific TRP channels is unknown. Here, we investigated the role of the putatively mechanosensitive TRPV4 channel in the mechanisms of endothelium-dependent vasodilatation. METHODS AND RESULTS(More)
BACKGROUND It has been proposed that activation of endothelial SK3 (K(Ca)2.3) and IK1 (K(Ca)3.1) K+ channels plays a role in the arteriolar dilation attributed to an endothelium-derived hyperpolarizing factor (EDHF). However, our understanding of the precise function of SK3 and IK1 in the EDHF dilator response and in blood pressure control remains(More)
BACKGROUND In blood vessels, the endothelium is a crucial signal transduction interface in control of vascular tone and blood pressure to ensure energy and oxygen supply according to the organs' needs. In response to vasoactive factors and to shear stress elicited by blood flow, the endothelium secretes vasodilating or vasocontracting autacoids, which(More)
BACKGROUND Preeclampsia is a multisystem disorder of pregnancy, originating in the placenta. Cytochrome P450 (CYP)-dependent eicosanoids regulate vascular function, inflammation, and angiogenesis, which are mechanistically important in preeclampsia. METHODS AND RESULTS We performed microarray screening of placenta and decidua (maternal placenta) from 25(More)
Ca(2+)-activated K(+) channels (KCa) play a pivotal role in the endothelium-dependent hyperpolarization and regulation of vascular tone and blood pressure. For activation, KCa depend on an increase of intracellular calcium which is substantially mediated by Ca(2+)-permeable cation channels including the transient receptor potential V4 (TRPV4). It has been(More)
AIMS Potassium channels are essential elements of endothelial function. Recently, evidence emerged that the TWIK (tandem of P domains in a weak inwardly rectifying K+ channel)-related K+ channel (TREK-1) of the two-pore domain potassium channel gene family (K2P) may be involved in the regulation of vascular tone. However, the functional and molecular(More)
BACKGROUND Cytochrome P450- and ω-hydrolase products (epoxyeicosatrienoic acids (EETs), hydroxyeicosatetraeonic acid (20-HETE)), natural omega-3 fatty acids (ω3), and pentacyclic triterpenes have been proposed to contribute to a wide range of vaso-protective and anti-fibrotic/anti-cancer signaling pathways including the modulation of membrane ion channels.(More)
  • 1