Learn More
SCRATCH is a server for predicting protein tertiary structure and structural features. The SCRATCH software suite includes predictors for secondary structure, relative solvent accessibility, disordered regions, domains, disulfide bridges, single mutation stability, residue contacts versus average, individual residue contacts and tertiary structure. The user(More)
Parkin, an E3 ubiquitin ligase implicated in Parkinson's disease, promotes degradation of dysfunctional mitochondria by autophagy. Using proteomic and cellular approaches, we show that upon translocation to mitochondria, Parkin activates the ubiquitin-proteasome system (UPS) for widespread degradation of outer membrane proteins. This is evidenced by an(More)
Intrinsically disordered regions in proteins are relatively frequent and important for our understanding of molecular recognition and assembly, and protein structure and function. From an algorithmic standpoint, flagging large disordered regions is also imortant for ab inito protein structure prediction methods. Here we first extract a curated,(More)
MOTIVATION Accurate prediction of B-cell epitopes is an important goal of computational immunology. Up to 90% of B-cell epitopes are discontinuous in nature, yet most predictors focus on linear epitopes. Even when the tertiary structure of the antigen is available, the accurate prediction of B-cell epitopes remains challenging. RESULTS Our predictor,(More)
Protein domains are the structural and functional units of proteins. The ability to parse protein chains into different domains is important for protein classification and for understanding protein structure, function, and evolution. Here we use machine learning algorithms, in the form of recursive neural networks, to develop a protein domain predictor(More)
Accurate prediction of B-cell epitopes has remained a challenging task in computational immunology despite several decades of research. Only 10% of the known B-cell epitopes are estimated to be continuous, yet they are often the targets of predictors because a solved tertiary structure is not required and they are integral to the development of peptide(More)
Many long non-coding RNAs (lncRNAs) affect gene expression, but the mechanisms by which they act are still largely unknown. One of the best-studied lncRNAs is Xist, which is required for transcriptional silencing of one X chromosome during development in female mammals. Despite extensive efforts to define the mechanism of Xist-mediated transcriptional(More)
MOTIVATION Transmembrane beta-barrel (TMB) proteins are embedded in the outer membranes of mitochondria, Gram-negative bacteria and chloroplasts. These proteins perform critical functions, including active ion-transport and passive nutrient intake. Therefore, there is a need for accurate prediction of secondary and tertiary structure of TMB proteins.(More)
The modular SCF (Skp1, cullin, and F box) ubiquitin ligases feature a large family of F box protein substrate receptors that enable recognition of diverse targets. However, how the repertoire of SCF complexes is sustained remains unclear. Real-time measurements of formation and disassembly indicate that SCF(Fbxw7) is extraordinarily stable, but, in the(More)
Epigenetic regulation of gene expression is, at least in part, mediated by histone modifications. PTMs of histones change chromatin structure and regulate gene transcription, DNA damage repair, and DNA replication. Thus, studying histone variants and their modifications not only elucidates their functional mechanisms in chromatin regulation, but also(More)