Michael J. Surace

Learn More
BACKGROUND Air pollution is linked to central nervous system disease, but the mechanisms responsible are poorly understood. OBJECTIVES Here, we sought to address the brain-region-specific effects of diesel exhaust (DE) and key cellular mechanisms underlying DE-induced microglia activation, neuroinflammation, and dopaminergic (DA) neurotoxicity. METHODS(More)
Increasing evidence links diverse forms of air pollution to neuroinflammation and neuropathology in both human and animal models, but the effects of long-term exposures are poorly understood. We explored the central nervous system consequences of subchronic exposure to diesel exhaust (DE) and addressed the minimum levels necessary to elicit(More)
BACKGROUND NADPH oxidase is implicated in neurotoxic microglial activation and the progressive nature of Alzheimer's Disease (AD). Here, we test the ability of two NADPH oxidase inhibitors, apocynin and dextromethorphan (DM), to reduce learning deficits and neuropathology in transgenic mice overexpressing human amyloid precursor protein with the Swedish and(More)
Although interleukin 1 (IL-1) induces expression of the transcription factor IRF1 (interferon-regulatory factor 1), the roles of IRF1 in immune and inflammatory responses and mechanisms of its activation remain elusive. Here we found that IRF1 was essential for IL-1-induced expression of the chemokines CXCL10 and CCL5, which recruit mononuclear cells into(More)
The secreted protein, YKL-40, has been proposed as a biomarker of a variety of human diseases characterized by ongoing inflammation, including chronic neurologic pathologies such as multiple sclerosis and Alzheimer's disease. However, inflammatory mediators and the molecular mechanism responsible for enhanced expression of YKL-40 remained elusive. Using(More)
The neuroinflammation associated with multiple sclerosis involves activation of astrocytes that secrete and respond to inflammatory mediators such as IL-1. IL-1 stimulates expression of many chemokines, including C-C motif ligand (CCL) 5, that recruit immune cells, but it also stimulates sphingosine kinase-1, an enzyme that generates sphingosine-1-phosphate(More)
Accumulating evidence suggests a deleterious role for urban air pollution in central nervous system (CNS) diseases and neurodevelopmental disorders. Microglia, the resident innate immune cells and sentinels in the brain, are a common source of neuroinflammation and are implicated in air pollution-induced CNS effects. While renewable energy, such as(More)
Microglia are key sentinels of central nervous system health, and their dysfunction has been widely implicated in the progressive nature of neurodegenerative diseases. While microglia can produce a host of factors that are toxic to neighboring neurons, NOX2 has been implicated as a common and essential mechanism of microglia-mediated neurotoxicity.(More)
  • 1