Michael J. Steel

Learn More
M. J. Steel, M. K. Olsen,* L. I. Plimak, P. D. Drummond, S. M. Tan, M. J. Collett, D. F. Walls, and R. Graham Department of Physics, University of Auckland, Private Bag 92 019, Auckland, New Zealand School of Mathematics, Physics, Computing and Electronics, Macquarie University, North Ryde, New South Wales 2109, Australia Institute for Theoretical Physics,(More)
We describe a multipole formulation that can be used for high-accuracy calculations of the full complex propagation constant of a microstructured optical fiber with a finite number of holes. We show how the imaginary part of the microstructure, which describes confinement losses not associated with absorption, varies with hole size, the number of rings of(More)
The symmetry of an optical waveguide determines its modal degeneracies. A fiber with rotational symmetry of order higher than 2 has modes that either are nondegenerate and support the complete fiber symmetry or are twofold degenerate pairs of lower symmetry. The latter case applies to the fundamental modes of perfect microstructured optical fibers,(More)
Diamond based technologies offer a material platform for the implementation of qubits for quantum computing. The photonic crystal architecture provides the route for a scalable and controllable implementation of high quality factor (Q) nanocavities, operating in the strong coupling regime for cavity quantum electrodynamics. Here we compute the photonic band(More)
We propose a scheme for on-chip isolation in chalcogenide (As₂S₃) rib waveguides, in which Stimulated Brillouin Scattering is used to induce non-reciprocal mode conversion within a multi-moded waveguide. The design exploits the idea that a chalcogenide rib buried in a silica matrix acts as waveguide for both light and sound, and can also be designed to be(More)
We design novel photonic crystal slab heterostructures, substituting the air in the holes with materials of refractive index higher than n=1. This can be achieved by infiltrating the photonic crystal slab (PCS) with liquid crystal, polymer or nano-porous silica. We find that the heterostructures designed in this way can have quality factors up to Q=10(6).(More)
The nitrogen vacancy (NV) center is the most widely studied single optical defect in diamond with great potential for applications in quantum technologies. Development of practical single-photon devices requires an understanding of the emission under a range of conditions and environments. In this work, we study the properties of a single NV center in(More)
We propose a novel concept for creating high-Q cavities in photonic crystal slabs (PCSs) composed of photosensitive material. To date, high-Q cavities have been realized through the use of double heterostructures where the lattice geometry is altered via nanolithography. Here, we show that selective postexposure to light of a uniform PCS composed of(More)
We study the confinement of low group velocity band-edge modes in a photonic crystal slab. We use a rigorous, three dimensional, finite-difference time-domain method to compute the electromagnetic properties of the modes of the photonic structures. We show that by combining a defect mode approach with the high-density of states associated with bandedge(More)
We theoretically investigate the generation of quantum-correlated photon pairs through spontaneous four-wave mixing in chalcogenide As(2)S(3) waveguides. For reasonable pump power levels, we show that such photonic-chip-based photon-pair sources can exhibit high brightness (approximately 1 x 10(9) pairs/s) and high correlation (approximately 100) if the(More)