Learn More
Signaling molecules with either attractive or repulsive effects on specific growth cones are likely to play a role in guiding axons to their appropriate targets. A chick brain glycoprotein, collapsin, has been shown to be a good candidate for a repulsive guidance cue. We report here the discovery of four new molecules related to collapsin in chick brains.(More)
Neuropilins have recently been characterized as receptors for secreted semaphorins. Here, we report the generation of a dominant negative form of neuropilin-1 by the deletion of one of its extracellular domains. Expression of this variant in cultured primary sympathetic neurons blocks the paralysis of growth cone motility normally induced by SEMA-3A(More)
1. Our aim was to assess whether ATP-induced inward currents in microglia are due to a single or more than one purinergic receptor. The ATP dose-response curve showed two components, whose presence might be due to the activation of high and low affinity receptors. 2. The P2Z/P2X7 specific receptor agonist benzoylbenzoyl-ATP (Bz-ATP) and some P2 receptor(More)
Erythropoietin (EPO) is the primary modulator of red blood cell production. Recently EPO has received considerable attention for its functions outside of hematopoiesis, including its effects in the nervous system where it has been shown to act as a neuroprotectant. To understand the function of EPO in the nervous system and to determine if EPO functions(More)
Sensory axons extend from the chick olfactory epithelium to the telencephalon well before the maturation of their target, the olfactory bulb. During a waiting period of several days, olfactory axons arrive and accumulate outside the CNS while the bulb differentiates beneath them. Semephorin-3A is expressed in the tel-encephalon during this period and has(More)
L-Glutamic acid (L-Glu) and L-aspartic acid (L-Asp) activate several receptor subtypes, including metabotropic Glu receptors coupled to phosphoinositide (PI) hydrolysis. Quisqualic acid (Quis) is the most potent agonist of these receptors. There is evidence that activation of these receptors may cause a long lasting sensitization of neurons to(More)
1. The present study examined whether LiCl antagonism of morphine-induced antinociception in mice occurs at mu-opioid receptors. 2. The antinociceptive ED50 value of intracerebroventricular morphine was maximally increased compared to controls 18 hr after LiCl (10 mmol/kg, s.c.) and remained significantly less (P < 0.05) 7 and 14 days after once-daily LiCl(More)
  • 1