Michael J. Peterson

Learn More
Sleep slow wave activity (SWA) is thought to reflect sleep need, increasing after wakefulness and decreasing after sleep. We showed recently that a learning task involving a circumscribed brain region produces a local increase in sleep SWA. We hypothesized that increases in cortical SWA reflect synaptic potentiation triggered by learning. To further(More)
Repetitive transcranial magnetic stimulation (rTMS) is increasingly being used to promote cortical reorganization, under the assumption that it can induce long-term potentiation (LTP) of neural responses. This assumption is supported by several lines of indirect evidence. For example, rTMS of motor cortex can induce a potentiation of muscle motor evoked(More)
Anhedonia, the loss of pleasure or interest in previously rewarding stimuli, is a core feature of major depression. While theorists have argued that anhedonia reflects a reduced capacity to experience pleasure, evidence is mixed as to whether anhedonia is caused by a reduction in hedonic capacity. An alternative explanation is that anhedonia is due to the(More)
During much of sleep, cortical neurons undergo near-synchronous slow oscillation cycles in membrane potential, which give rise to the largest spontaneous waves observed in the normal electroencephalogram (EEG). Slow oscillations underlie characteristic features of the sleep EEG, such as slow waves and spindles. Here we show that, in sleeping subjects, slow(More)
OBJECTIVE High-density EEG during sleep represents a powerful new tool to reveal potential abnormalities in rhythm-generating mechanisms while avoiding confounding factors associated with waking activities. As a first step in this direction, the authors employed high-density EEG to explore whether sleep rhythms differ between schizophrenia subjects, healthy(More)
The basis for the consolidation of memory is a controversial topic, particularly in the case of motor memory. One view is that motor memory is transferred, partially or completely, to a new location during the consolidation process ("systems consolidation"). We investigated this possibility in a primitive motor system, the vestibulo-ocular reflex (VOR). In(More)
Understanding the contributions of the prefrontal cortex (PFC) to working memory is central to understanding the neural bases of high-level cognition. One question that remains controversial is whether the same areas of the dorsolateral PFC (dlPFC) that participate in the manipulation of information in working memory also contribute to its short-term(More)
OBJECTIVE Transcranial magnetic stimulation (TMS) combined with high-density electroencephalography (EEG) can be used to directly examine the properties of thalamocortical circuits in the brain without engaging an individual in cognitive or motor tasks. The authors investigated EEG responses in schizophrenia patients and healthy comparison subjects(More)
BACKGROUND Sleep slow wave activity (SWA) is thought to reflect sleep need, increasing in proportion to the length of prior wakefulness and decreasing during sleep. However, the process responsible for SWA regulation is not known. We showed recently that SWA increases locally after a learning task involving a circumscribed brain region, suggesting that SWA(More)
OBJECTIVE Slow waves and sleep spindles are the two main oscillations occurring during non-REM sleep. While slow oscillations are primarily generated and modulated by the cortex, sleep spindles are initiated by the thalamic reticular nucleus and regulated by thalamo-reticular and thalamo-cortical circuits. In a recent high-density EEG study, the authors(More)