Michael J. Mustari

Learn More
The pretectal nucleus of the optic tract (NOT) plays an essential role in optokinetic nystagmus, the reflexive movements of the eyes to motion of the entire visual scene. To determine how the NOT can influence structures that move the eyes, we injected it with lectin-conjugated horseradish peroxidase and characterized its afferent and efferent connections.(More)
1. The anatomical connections of the dorsolateral pontine nucleus (DLPN) implicate it in the production of smooth-pursuit eye movements. It receives inputs from cortical structures believed to be involved in visual motion processing (middle temporal cortex) or motion execution (posterior parietal cortex) and projects to the flocculus of the cerebellum,(More)
Humans use saccadic eye movements to make frequent gaze changes, yet the associated full-field image motion is not perceived. The theory of saccadic suppression has been proposed to account for this phenomenon, but it is not clear whether suppression originates from a retinal signal at saccade onset or from the brain before saccade onset. Perceptually,(More)
1. To determine the possible role of the primate pretectal nucleus of the optic tract (NOT) in the generation of optokinetic and smooth-pursuit eye movements, we recorded the activity of 155 single units in four behaving rhesus macaques. The monkeys were trained to fixate a stationary target spot during visual testing and to track a small moving spot in a(More)
Most cell of the dorsal laterial geniculate nucleus of rats are generated on fetal days 12 to 14. Their axons invade the telencephalon on fetal day 16 and run in the intermediate zone just below the cortical plate, reaching the visual area of fetal day 18. The axons do not invade the cortical plate significantly until close to birth (day 22 of gestation)(More)
Studies of individual neurons in area MT have traditionally investigated their sensitivity to constant speeds. We investigated acceleration sensitivity in MT neurons by comparing their responses to constant steps and linear ramps in stimulus speed. Speed ramps constituted constant accelerations and decelerations between 0 and 240 degrees /s. Our results(More)
The responses of neurons in the middle temporal and medial superior temporal areas of macaque cortex are suppressed during saccades compared with saccade-like stimulus movements. We utilized the short-latency ocular following paradigm to show that this saccadic suppression is followed by postsaccadic enhancement of motion responses. The level of enhancement(More)
The nucleus of the optic tract and dorsal terminal nucleus of the accessory optic system (NOT-DTN) along with the dorsolateral pontine nucleus (DLPN) have been shown to play a role in controlling slow eye movements and in maintaining stable vision during head movements. Both nuclei are known to receive cortical input from striate and extrastriate cortex. To(More)
We recorded from single units in the pretectal nucleus of the optic tract (NOT) of the nonhuman primate. Specifically, we examined units that are modulated during smooth tracking of a small laser spot against a dark background. We used a nonlinear optimization procedure to determine whether the unit responses of these parafoveal cells are better described(More)