Learn More
RATIONALE This review provides insight for the judicious selection of nicotine dose ranges and routes of administration for in vivo studies. The literature is replete with reports in which a dosaging regimen chosen for a specific nicotine-mediated response was suboptimal for the species used. In many cases, such discrepancies could be attributed to the(More)
Alpha6-containing (alpha6*) nicotinic ACh receptors (nAChRs) are selectively expressed in dopamine (DA) neurons and participate in cholinergic transmission. We generated and studied mice with gain-of-function alpha6* nAChRs, which isolate and amplify cholinergic control of DA transmission. In contrast to gene knockouts or pharmacological blockers, which(More)
Pharmacological evaluation of nicotine-stimulated dopamine release from striatum has yielded data consistent with activation of a single population of nicotinic acetylcholine receptors (nAChR). However, discovery that alpha-conotoxin MII (alpha-CtxMII) partially inhibits the response indicates that two classes of presynaptic nAChRs mediate dopamine release.(More)
alpha-Conotoxin MII (CtxMII), a peptide toxin from the venom of the predatory cone snail Conus magus, displays an unusual nicotinic pharmacology. Specific binding of a radioiodinated derivative ((125)I-alpha-CtxMII) was identified in brain region homogenates and tissue sections. Quantitative autoradiography indicated that (125)I-alpha-CtxMII binding sites(More)
Dopamine (DA) release in striatum is governed by firing rates of midbrain DA neurons, striatal cholinergic tone, and nicotinic ACh receptors (nAChRs) on DA presynaptic terminals. DA neurons selectively express ␣6* nAChRs, which show high ACh and nicotine sensitivity. To help identify nAChR subtypes that control DA transmission, we studied transgenic mice(More)
Genetic variation in CHRNA5, the gene encoding the α5 nicotinic acetylcholine receptor subunit, increases vulnerability to tobacco addiction and lung cancer, but the underlying mechanisms are unknown. Here we report markedly increased nicotine intake in mice with a null mutation in Chrna5. This effect was 'rescued' in knockout mice by re-expressing α5(More)
Subtypes of nicotinic acetylcholine receptors (nAChR) containing alpha6 subunits comprise 25 to 30% of the presynaptic nAChRs expressed in striatal dopaminergic terminals in rodents and 70% in monkeys. This class of receptors, potentially important in nicotine addiction, binds alpha-conotoxin MII (alpha-CtxMII) with high affinity and is heterogeneous,(More)
Inbred mouse strains differ in sensitivity to a first dose of nicotine and in the development of tolerance to nicotine. The experiments reported here used six inbred mouse strains (A, BUB, C3H, C57BL/6, DBA/2, ST/b) that differ in sensitivity to an acute challenge dose of nicotine to determine whether differences in oral self-selection of nicotine exist.(More)
[(125)I]-Epibatidine binds to multiple nicotinic acetylcholine receptor (nAChR) subtypes with high affinity. In this study, [(125)I]-epibatidine was used to label and characterize a novel nAChR subtype found in mouse brain inferior colliculus, interpeduncular nucleus, and olfactory bulb homogenates. Binding of [(125)I]-epibatidine was saturable and(More)
Understanding effects of chronic nicotine requires identifying the neurons and synapses whose responses to nicotine itself, and to endogenous acetylcholine, are altered by continued exposure to the drug. To address this problem, we developed mice whose alpha4 nicotinic receptor subunits are replaced by normally functioning fluorescently tagged subunits,(More)