Learn More
Although drugs are intended to be selective, at least some bind to several physiological targets, explaining side effects and efficacy. Because many drug-target combinations exist, it would be useful to explore possible interactions computationally. Here we compared 3,665 US Food and Drug Administration (FDA)-approved and investigational drugs against(More)
The identification of protein function based on biological information is an area of intense research. Here we consider a complementary technique that quantitatively groups and relates proteins based on the chemical similarity of their ligands. We began with 65,000 ligands annotated into sets for hundreds of drug targets. The similarity score between each(More)
Discovering the unintended 'off-targets' that predict adverse drug reactions is daunting by empirical methods alone. Drugs can act on several protein targets, some of which can be unrelated by conventional molecular metrics, and hundreds of proteins have been implicated in side effects. Here we use a computational strategy to predict the activity of 656(More)
Clozapine, by virtue of its absence of extrapyramidal side effects and greater efficacy, revolutionized the treatment of schizophrenia, although the mechanisms underlying this exceptional activity remain controversial. Combining an unbiased cheminformatics and physical screening approach, we evaluated clozapine's activity at >2350 distinct molecular(More)
Target identification is a core challenge in chemical genetics. Here we use chemical similarity to computationally predict the targets of 586 compounds that were active in a zebrafish behavioral assay. Among 20 predictions tested, 11 compounds had activities ranging from 1 nM to 10,000 nM on the predicted targets. The roles of two of these targets were(More)
The similarity of drug targets is typically measured using sequence or structural information. Here, we consider chemo-centric approaches that measure target similarity on the basis of their ligands, asking how chemoinformatics similarities differ from those derived bioinformatically, how stable the ligand networks are to changes in chemoinformatics(More)
Virtual and high-throughput screens (HTS) should have complementary strengths and weaknesses, but studies that prospectively and comprehensively compare them are rare. We undertook a parallel docking and HTS screen of 197861 compounds against cruzain, a thiol protease target for Chagas disease, looking for reversible, competitive inhibitors. On workup, 99%(More)
In lead discovery, libraries of 10(6) molecules are screened for biological activity. Given the over 10(60) drug-like molecules thought possible, such screens might never succeed. The fact that they do, even occasionally, implies a biased selection of library molecules. We have developed a method to quantify the bias in screening libraries toward biogenic(More)
The similarity ensemble approach (SEA) relates proteins based on the set-wise chemical similarity among their ligands. It can be used to rapidly search large compound databases and to build cross-target similarity maps. The emerging maps relate targets in ways that reveal relationships one might not recognize based on sequence or structural similarities(More)