Learn More
This paper describes a machine learning approach for visual object detection which is capable of processing images extremely rapidly and achieving high detection rates. This work is distinguished by three key contributions. The first is the introduction of a new image representation called the " Integral Image " which allows the features used by our(More)
This paper describes a face detection framework that is capable of processing images extremely rapidly while achieving high detection rates. There are three key contributions. The first is the introduction of a new image representation called the “Integral Image” which allows the features used by our detector to be computed very quickly. The second is a(More)
The existence of large image datasets such as the set of photos on the World Wide Web make it possible to build powerful generic models for low-level image attributes like color using simple histogram learning techniques. We describe the construction of color models for skin and non-skin classes from a dataset of nearly 1 billion labelled pixels. These(More)
This paper describes a pedestrian detection system that integrates image intensity information with motion information. We use a detection style algorithm that scans a detector over two consecutive frames of a video sequence. The detector is trained (using AdaBoost) to take advantage of both motion and appearance information to detect a walking person. Past(More)
In this work, we propose a method for simultaneously learning features and a corresponding similarity metric for person re-identification. We present a deep convolutional architecture with layers specially designed to address the problem of re-identification. Given a pair of images as input, our network outputs a similarity value indicating whether the two(More)
This paper develops a new approach for extremely fast detection in domains where the distribution of positive and negative examples is highly skewed (e.g. face detection or database retrieval). In such domains a cascade of simple classifiers each trained to achieve high detection rates and modest false positive rates can yield a final detector with many(More)
This paper extends the face detection framework proposed by Viola and Jones 2001 to handle profile views and rotated faces. As in the work of Rowley et al 1998. and Schneider-man et al. 2000, we build different detectors for different views of the face. A decision tree is then trained to determine the viewpoint class (such as right profile or rotated 60(More)
We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Basis Functions approximation schemes. This paper shows that(More)
We describe a flexible model for representing images of objects of a certain class, known a priori, such as faces, and introduce a new algorithm for matching it to a novel image and thereby perform image analysis. The flexible model, known as a multidimensional morphable model, is learned from example images of objects of a class. In this paper we introduce(More)