Learn More
We present our current understanding of the composition, vertical mixing, cloud structure and the origin of the atmospheres of Jupiter and Saturn. Available observations point to a much more vigorous vertical mixing in Saturn's middle-upper atmosphere than in Jupiter's. The nearly cloud-free nature of the Galileo probe entry site, a 5-micron hotspot, is(More)
The Trojan population consists of two swarms of asteroids following the same orbit as Jupiter and located at the L4 and L5 stable Lagrange points of the Jupiter-Sun system (leading and following Jupiter by 60 degrees ). The asteroid 617 Patroclus is the only known binary Trojan. The orbit of this double system was hitherto unknown. Here we report that the(More)
Surface soils from Guiyu, China (an intense e-waste processing center) were analyzed for persistent organic pollutants (POPs) and variations in composition of the resident bacterial communities. Denaturing Gradient Gel Electrophoresis analysis of bacterial 16S rRNA gene showed that e-waste pollution altered the bacterial community structure by promoting(More)
Giant planet atmospheric composition and satellite densities provide insights into protoplanetary disk conditions. Abundances of condensable species and noble gases in well-mixed atmospheres can distinguish among several giant planet formation scenarios, and satellite densities are fi rst order measurements of ice:rock ratios. Recent work on protosolar(More)
Precipitation is expected in Titan's atmosphere, yet it has not been directly observed, and the geographical regions where rain occurs are unknown. Here we present near-infrared spectra from the Very Large Telescope and W. M. Keck Observatories that reveal an enhancement of opacity in Titan's troposphere on the morning side of the leading hemisphere.(More)
Jupiter's nonthermal microwave emission, as measured by a global network of 11 radio telescopes, increased dramatically during the Shoemaker-Levy 9 impacts. The increase was wavelength-dependent, varying from approximately 10 percent at 70 to 90 centimeters to approximately 45 percent at 6 and 36 centimeters. The radio spectrum hardened (flattened toward(More)
Volume mixing and isotope ratios secured with repeated atmospheric measurements taken with the Sample Analysis at Mars instrument suite on the Curiosity rover are: carbon dioxide (CO2), 0.960(±0.007); argon-40 ((40)Ar), 0.0193(±0.0001); nitrogen (N2), 0.0189(±0.0003); oxygen, 1.45(±0.09) × 10(-3); carbon monoxide, < 1.0 × 10(-3); and (40)Ar/(36)Ar,(More)
[1] The quadrupole mass spectrometer of the Sample Analysis at Mars (SAM) instrument on Curiosity rover has made the first high-precision measurement of the nonradiogenic argon isotope ratio in the atmosphere of Mars. The resulting value of 36 Ar/ 38 Ar = 4.2 ± 0.1 is highly significant for it provides excellent evidence that " Mars " meteorites are indeed(More)
The atmospheres of the gas giant planets (Jupiter and Saturn) contain jets that dominate the circulation at visible levels. The power source for these jets (solar radiation, internal heat, or both) and their vertical structure below the upper cloud are major open questions in the atmospheric circulation and meteorology of giant planets. Several observations(More)
Hsp70 binding protein 1 (HspBP1) and Bcl2-associated athanogene 1 (BAG-1), the functional orthologous nucleotide exchange factors of the heat shock protein 70 kilodalton (Hsc70/Hsp70) chaperones, catalyze the release of ADP from Hsp70 while inducing different conformational changes of the ATPase domain of Hsp70. An appropriate exchange rate of ADP/ATP is(More)