Michael J. Gutnick

Ilya A Fleidervish9
Berta Levavi-Sivan2
Alexander M Binshtok2
Corinne L Bloch2
Nadav Astman1
Learn More
In addition to the well described fast-inactivating component of the Na+ current [transient Na+ current (INaT)], neocortical neurons also exhibit a low-voltage-activated, slowly inactivating "persistent" Na+ current (INaP), which plays a role in determining neuronal excitability and synaptic integration. We investigated the Na+ channels responsible for INaP(More)
In layer 4 of the somatosensory cortex, the glutamatergic synapses that interconnect spiny stellate (SpS) neurons, which are the major targets of thalamocortical input, differ from most other neocortical excitatory synapses in that they have an extremely large NMDA receptor (NMDAR)-mediated component that is relatively insensitive to voltage-dependent Mg2+(More)
In sensory areas of neocortex, thalamocortical afferents project primarily onto the spiny stellate neurons of Layer 4. Anatomical evidence indicates that these cells receive most of their excitatory input from other cortical neurons, including other spiny stellate cells. Although this local network must play an important role in sensory processing, little(More)
In cortical pyramidal neurons, the axon initial segment (AIS) is pivotal in synaptic integration. It has been asserted that this is because there is a high density of Na(+) channels in the AIS. However, we found that action potential-associated Na(+) flux, as measured by high-speed fluorescence Na(+) imaging, was about threefold larger in the rat AIS than(More)
Because the excitable properties of neurons in the neocortex depend on the characteristics of voltage-gated Na(+) channels, factors which regulate those characteristics can fundamentally modify the dynamics of cortical circuits. Here, we report on a novel neuromodulatory mechanism that links the availability of Na(+) channels to metabolism of polyamines(More)
We built a passive compartmental model of a cortical spiny stellate cell from the barrel cortex of the mouse that had been reconstructed in its entirety from electron microscopic analysis of serial thin sections (White and Rock, 1980). Morphological data included dimensions of soma and all five dendrites, neck lengths and head diameters of all 380 spines (a(More)
The anterior pituitary of teleost fish contains a variety of endocrine cells, which, under control from the hypothalamus, release trophic hormones and thereby play a major role in reproduction, social behavior, and growth. In fish, hypothalamic fibers directly innervate the pituitary. The hypothalamic hormones released from these fibers bind to membrane(More)
Soon after exposure to hypoxia or ischemia, neurons in cortical tissues undergo massive anoxic depolarization (AD). This precipitous event is preceded by more subtle neuronal changes, including enhanced excitatory and inhibitory synaptic transmitter release. Here, we have used patch-in-slice techniques to identify the earliest effects of acute hypoxia on(More)
Organotypic cultures, prepared from hypothalamo-pituitary slices of tilapia, were developed to enable long-term study of secretory cells in the pituitary of a teleost. Values of membrane potential at rest were similar to those recorded from acute slices, and cells presented similar spontaneous spikes and spikelets. Some cells also exhibited slow spontaneous(More)
  • 1