Michael J. Daly

Learn More
Deinococcus radiodurans is extremely resistant to ionizing radiation. How this bacterium can grow under chronic gamma radiation [50 grays (Gy) per hour] or recover from acute doses greater than 10 kGy is unknown. We show that D. radiodurans accumulates very high intracellular manganese and low iron levels compared with radiation-sensitive bacteria and that(More)
This paper explores the interface between personality psychology and economics. We examine the predictive power of personality and the stability of personality traits over the life cycle. We develop simple analytical frameworks for interpreting the evidence in personality psychology and suggest promising avenues for future research. Lex Borghans is a(More)
The bacterium Deinococcus radiodurans shows remarkable resistance to a range of damage caused by ionizing radiation, desiccation, UV radiation, oxidizing agents, and electrophilic mutagens. D. radiodurans is best known for its extreme resistance to ionizing radiation; not only can it grow continuously in the presence of chronic radiation (6 kilorads/h), but(More)
The availability of dense genetic linkage maps of mammalian genomes makes feasible a wide range of studies, including positional cloning of monogenic traits, genetic dissection of polygenic traits, construction of genome-wide physical maps, rapid marker-assisted construction of congenic strains, and evolutionary comparisons. We have been engaged for the(More)
The complete genome sequence of the radiation-resistant bacterium Deinococcus radiodurans R1 is composed of two chromosomes (2,648,638 and 412,348 base pairs), a megaplasmid (177,466 base pairs), and a small plasmid (45,704 base pairs), yielding a total genome of 3,284, 156 base pairs. Multiple components distributed on the chromosomes and megaplasmid that(More)
The genome sequence of the solvent-producing bacterium Clostridium acetobutylicum ATCC 824 has been determined by the shotgun approach. The genome consists of a 3.94-Mb chromosome and a 192-kb megaplasmid that contains the majority of genes responsible for solvent production. Comparison of C. acetobutylicum to Bacillus subtilis reveals significant local(More)
In the hierarchy of cellular targets damaged by ionizing radiation (IR), classical models of radiation toxicity place DNA at the top. Yet, many prokaryotes are killed by doses of IR that cause little DNA damage. Here we have probed the nature of Mn-facilitated IR resistance in Deinococcus radiodurans, which together with other extremely IR-resistant(More)
In classical models of radiation toxicity, DNA is the molecule that is most affected by ionizing radiation (IR). However, recent data show that the amount of protein damage caused during irradiation of bacteria is better related to survival than to DNA damage. In this Opinion article, a new model is presented in which proteins are the most important target(More)
For Deinococcus radiodurans and other bacteria which are extremely resistant to ionizing radiation, ultraviolet radiation, and desiccation, a mechanistic link exists between resistance, manganese accumulation, and protein protection. We show that ultrafiltered, protein-free preparations of D. radiodurans cell extracts prevent protein oxidation at massive(More)
Deinococcus radiodurans R1 (DEIRA) is a bacterium best known for its extreme resistance to the lethal effects of ionizing radiation, but the molecular mechanisms underlying this phenotype remain poorly understood. To define the repertoire of DEIRA genes responding to acute irradiation (15 kGy), transcriptome dynamics were examined in cells representing(More)