Michael J. Blackman

Learn More
Clinical malaria is associated with the proliferation of Plasmodium parasites in human erythrocytes. The coordinated processes of parasite egress from and invasion into erythrocytes are rapid and tightly regulated. We have found that the plant-like calcium-dependent protein kinase PfCDPK5, which is expressed in invasive merozoite forms of Plasmodium(More)
The most virulent form of malaria is caused by waves of replication of blood stages of the protozoan pathogen Plasmodium falciparum. The parasite divides within an intraerythrocytic parasitophorous vacuole until rupture of the vacuole and host-cell membranes releases merozoites that invade fresh erythrocytes to repeat the cycle. Despite the importance of(More)
A complex of polypeptides derived from a precursor is present on the surface of the malaria merozoite. During erythrocyte invasion only a small fragment from this complex is retained on the parasite surface and carried into the newly infected red cell. Antibodies to this fragment will interrupt invasion.
Apicomplexan pathogens are obligate intracellular parasites. To enter cells, they must bind with high affinity to host cell receptors and then uncouple these interactions to complete invasion. Merozoites of Plasmodium falciparum, the parasite responsible for the most dangerous form of malaria, invade erythrocytes using a family of adhesins called Duffy(More)
Proteolytic shedding of surface proteins during invasion by apicomplexan parasites is a widespread phenomenon, thought to represent a mechanism by which the parasites disengage adhesin-receptor complexes in order to gain entry into their host cell. Erythrocyte invasion by merozoites of the malaria parasite Plasmodium falciparum requires the shedding of(More)
Host cell invasion by apicomplexan pathogens such as the malaria parasite Plasmodium spp. and Toxoplasma gondii involves discharge of proteins from secretory organelles called micronemes and rhoptries. In Toxoplasma a protein complex comprising the microneme apical membrane antigen 1 (AMA1), two rhoptry neck proteins, and a protein called Ts4705, localises(More)
Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is a malaria merozoite integral membrane protein that plays an essential but poorly understood role in invasion of host erythrocytes. The PfAMA-1 ectodomain comprises three disulfide-constrained domains, the first of which (domain I) is preceded by an N-terminal prosequence. PfAMA-1 is initially(More)
Erythrocyte invasion by the malaria merozoite is accompanied by the regulated discharge of apically located secretory organelles called micronemes. Plasmodium falciparum apical membrane antigen-1 (PfAMA-1), which plays an indispensable role in invasion, translocates from micronemes onto the parasite surface and is proteolytically shed in a soluble form(More)
Apical membrane antigen 1 (AMA-1) is a highly promising malaria blood-stage vaccine candidate that has induced protection in rodent and nonhuman primate models of malaria. Authentic conformation of the protein appears to be essential for the induction of parasite-inhibitory antibody responses. Here we have developed a synthetic gene with adapted codon usage(More)
Malaria places an increasing burden on global public health resources. In the face of growing resistance of the malaria parasite to available antimalarial drugs, there is a need for new drugs and the identification of new chemotherapeutic targets. The malaria parasite has a complex life cycle which includes a number of obligate intracellular stages.(More)