Michael J. Black

Learn More
The quantitative evaluation of optical flow algorithms by Barron et al. (1994) led to significant advances in performance. The challenges for optical flow algorithms today go beyond the datasets and evaluation methods proposed in that paper. Instead, they center on problems associated with complex natural scenes, including nonrigid motion, real sensor(More)
reflections, shadows, or fragmented occlusion (for example, looking through the branches of a tree). The assumpMost approaches for estimating optical flow assume that, within a finite image region, only a single motion is present. tion may also be violated when the region spans a depth This single motion assumption is violated in common situations(More)
The accuracy of optical flow estimation algorithms has been improving steadily as evidenced by results on the Middlebury optical flow benchmark. The typical formulation, however, has changed little since the work of Horn and Schunck. We attempt to uncover what has made recent advances possible through a thorough analysis of how the objective function, the(More)
This paper describes an approach for tracking rigid and articulated objects using a view-based representation. The approach builds on and extends work on eigenspace representations, robust estimation techniques, and parameterized optical flow estimation. First, we note that the least-squares image reconstruction of standard eigenspace techniques has a(More)
We develop a framework for learning generic, expressive image priors that capture the statistics of natural scenes and can be used for a variety of machine vision tasks. The approach extends traditional Markov random field (MRF) models by learning potential functions over extended pixel neighborhoods. Field potentials are modeled using a Products-of-Experts(More)
While research on articulated human motion and pose estimation has progressed rapidly in the last few years, there has been no systematic quantitative evaluation of competing methods to establish the current state of the art. We present data obtained using a hardware system that is able to capture synchronized video and ground-truth 3D motion. The resulting(More)
Relations between anisotropic diffusion and robust statistics are described in this paper. Specifically, we show that anisotropic diffusion can be seen as a robust estimation procedure that estimates a piecewise smooth image from a noisy input image. The "edge-stopping" function in the anisotropic diffusion equation is closely related to the error norm and(More)
Ground truth optical flow is difficult to measure in real scenes with natural motion. As a result, optical flow data sets are restricted in terms of size, complexity, and diversity, making optical flow algorithms difficult to train and test on realistic data. We introduce a new optical flow data set derived from the open source 3D animated short film(More)
A probabilistic method for tracking 3D articulated human gures in monocular image sequences is presented. Within a Bayesian framework, we de ne a generative model of image appearance, a robust likelihood function based on image graylevel di erences, and a prior probability distribution over pose and joint angles that models how humans move. The posterior(More)
We develop a framework for learning generic, expressive image priors that capture the statistics of natural scenes and can be used for a variety of machine vision tasks. The approach provides a practical method for learning high-order Markov random field (MRF) models with potential functions that extend over large pixel neighborhoods. These clique(More)