Learn More
To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by(More)
To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before the teleost genome duplication (TGD). The slowly evolving gar genome conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by(More)
Teleost fishes represent about half of all living vertebrate species 1 and provide important models for human disease (for example, zebrafish and medaka) 2–9. Connecting teleost genes and gene functions to human biology (Fig. 1a) can be challenging given (i) the two rounds of early vertebrate genome duplication (VGD1 and VGD2 (ref. 10), but see ref. 11)(More)
  • 1