Michael J Adang

Learn More
CryIA(c) delta-endotoxin, a member of the CryI family of Bacillus thuringiensis insecticidal proteins, specifically recognizes and binds with high affinity to target proteins in the midgut of susceptible insects. Protein blots of Manduca sexta brush-border membranes probed with 125I-CryIA(c) identify a major binding protein of 120 kDa and a minor binding(More)
The development of pest resistance threatens the effectiveness of Bacillus thuringiensis (Bt) toxins used in transgenic and organic farming. Here, we demonstrate that (i) the major mechanism for Bt toxin resistance in Caenorhabditis elegans entails a loss of glycolipid carbohydrates; (ii) Bt toxin directly and specifically binds glycolipids; and (iii) this(More)
We reported previously a direct correlation between reduced soybean agglutinin binding to 63- and 68-kDa midgut glycoproteins and resistance to Cry1Ac toxin from Bacillus thuringiensis in the tobacco budworm (Heliothis virescens). In the present work we describe the identification of the 68-kDa glycoprotein as a membrane-bound form of alkaline phosphatase(More)
Proteins such as aminopeptidases and alkaline phosphatases, both glycosyl-phosphatidyl-inositol (GPI) anchored proteins, were previously identified as Cry1Ac binding proteins in the Heliothis virescens midgut. To identify additional toxin binding proteins, brush border membrane vesicles from H. virescens larvae were treated with phosphatidyl inositol(More)
Transgenic corn expressing the Bacillus thuringiensis Cry1Ab gene is highly insecticidal to Ostrinia nubilalis (European corn borer) larvae. We ascertained whether Cry1F, Cry9C, or Cry9E recognizes the Cry1Ab binding site on the O. nubilalis brush border by three approaches. An optical biosensor technology based on surface plasmon resonance measured binding(More)
We have examined expression of several insecticidal crystal protein (ICP) genes of Bacillus thuringiensis in transgenic tobacco plants and electroporated carrot protoplasts. We determined that low levels of lepidopteran toxin cryIA(b) ICP gene expression in plants and electroporated carrot cells is due to RNA instability. We used a series of 3′ deleted(More)
Continued success of the most widely used biopesticide, Bacillus thuringiensis, is threatened by development of resistance in pests. Experiments with Plutella xylostella (diamondback moth), the first insect with field populations resistant to B. thuringiensis, revealed factors that promote reversal of resistance. In strains of P. xylostella with 25- to(More)
We constructed a model for Bacillus thuringiensis Cry1 toxin binding to midgut membrane vesicles from Heliothis virescens. Brush border membrane vesicle binding assays were performed with five Cry1 toxins that share homologies in domain II loops. Cry1Ab, Cry1Ac, Cry1Ja, and Cry1Fa competed with (125)I-Cry1Aa, evidence that each toxin binds to the Cry1Aa(More)
Bacillus thuringiensis subsp. kurstaki HD-73 produces a crystal protein which is lethal to many lepidopteran larvae. The gene encoding this crystal protein has been isolated from a 75-kb plasmid and engineered into a recombinant Escherichia coli plasmid for analysis. The complete nucleotide sequences of the coding region and 387-bp 5' and 376-bp 3' to the(More)
A Bacillus thuringiensis (B.t.) cryIIIA δ-endotoxin gene was designed for optimal expression in plants. The modified cry gene has the codon usage pattern of an average dicot gene and does not contain AT-rich nucleotide sequences typical of native B.t. cry genes. We assembled the 1.8 kb cryIIIA gene in nine blocks of three oligonucleotide pairs. For two DNA(More)